
WordPress
Installation
All docs related to wordpress installation

[How-To] Install Wordpress on Debian 12 LXC

[How-To] Install Wordpress
on Debian 12 LXC
Purpose
The purpose of this How-To article will be to install WordPress and the full LAMP stack on an LXC
Container in proxmox. Most of this configuration could also be done on baremetal or a VM of any
Debian flavor. We'll be using Debian 12.

Prerequisites
A LXC with Debian 12 as its base
User privileges: root or non-root user with sudo privileges

Installation
Step 1: Update the System
Before we start with LAMP installation, we need to update the system packages to the latest
versions available.

Step 2: Install Apache Web Server
We will start with the Apache web server from the LAMP stack first. To install the Apache Web
server execute the following command:

Once installed, start and enable the service.

Check if the service is up and running:

sudo apt-get update -y && sudo apt-get upgrade -y

sudo apt install apache2 -y

sudo systemctl enable apache2 && sudo systemctl start apache2

You should receive the following output:

Step 3: Install PHP with Dependencies
Next, we will install PHP. PHP8.2 is by default enabled in the Debian 12 repository, so to install
PHP8.2 with extensions, execute the following commands:

To check the installed PHP version, execute the following command:

You should get the following output:

Step 4: Install the MariaDB Database Server
The last of the LAMP stack is the MariaDB database server. To install it, execute the command
below.

sudo systemctl status apache2

root@host:~# sudo systemctl status apache2
● apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/apache2.service; enabled; preset: enabled)
 Active: active (running) since Thu 2023-08-03 06:02:42 CDT; 22h ago
 Docs: https://httpd.apache.org/docs/2.4/
 Main PID: 711 (apache2)
 Tasks: 10 (limit: 4644)
 Memory: 29.7M
 CPU: 4.878s
 CGroup: /system.slice/apache2.service

sudo apt-get install php8.2 php8.2-cli php8.2-common php8.2-imap php8.2-redis php8.2-snmp php8.2-xml
php8.2-mysqli php8.2-zip php8.2-mbstring php8.2-curl libapache2-mod-php -y

php -v

root@host:~# php -v
Created directory: /var/lib/snmp/cert_indexes
PHP 8.2.7 (cli) (built: Jun 9 2023 19:37:27) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.2.7, Copyright (c) Zend Technologies
 with Zend OPcache v8.2.7, Copyright (c), by Zend Technologies

Start and enable the mariadb.service with the following commands:

Check the status of the mariadb.service

You should receive the following output:

Finally, setup the mariadb server with the following command:

The script walks you through a series of prompts that will require you to make changes to the
security options that involve the MariaDB database engine.

The first prompt asks you to provide the current root password, and since none has been set up
yet, simply hit ENTER on your keyboard.

Next, you will be prompted for the database root password. This ensures that no one can log in as
the root user without authentication. So, type ‘Y’ and provide the database root password and
confirm it.

Then press ‘Y’ for the subsequent prompts in order to configure the database engine according to
the best security practices. This does the following:

sudo apt install mariadb-server -y

sudo systemctl start mariadb && sudo systemctl enable mariadb

sudo systemctl status mariadb

root@host:~# sudo systemctl status mariadb
● mariadb.service - MariaDB 10.11.3 database server
 Loaded: loaded (/lib/systemd/system/mariadb.service; enabled; preset: enabled)
 Active: active (running) since Fri 2023-08-04 05:04:01 CDT; 26s ago
 Docs: man:mariadbd(8)
 https://mariadb.com/kb/en/library/systemd/
 Main PID: 8511 (mariadbd)
 Status: "Taking your SQL requests now..."
 Tasks: 16 (limit: 4644)
 Memory: 174.3M
 CPU: 907ms
 CGroup: /system.slice/mariadb.service
 └─8511 /usr/sbin/mariadbd

mariadb-secure-installation

Removes anonymous users from the database server
Disables remote root login. This ensures that the root user can only log in to the database
server from “localhost”
Remove the test database which comes with MariaDB by default.
Reloads privilege tables for the changes t take effect immediately.

At this point, you have successfully completed the initial security configuration for MariaDB.

Step 5: Create a WordPress Database and User
Next, we need to create a WordPress database, the WordPress user, and grant the permissions for
that user to the database.

Be sure to store these credentials/information in a safe credentials manager as they should be
treated the same way as a password.

Step 6: Download and Install WordPress
Before we install WordPress, we first need to download it in the default Apache document root:

Set the right permissions to files and folders.

Now, open the wp-config.php file with your favorite editor and enter the database credentials you
created in the previous step.

CREATE USER 'wordpress'@'localhost' IDENTIFIED BY 'YourStrongPasswordHere';
 CREATE DATABASE wordpress;
 GRANT ALL PRIVILEGES ON wordpress.* TO 'wordpress'@'localhost';
 FLUSH PRIVILEGES;
 EXIT;

cd /var/www/html

wget https://wordpress.org/latest.zip

unzip latest.zip

rm latest.zip

chown -R www-data:www-data wordpress/

cd wordpress/

find . -type d -exec chmod 755 {} \;

find . -type f -exec chmod 644 {} \;

It should look similar to this:

Step 7: Create Apache Virtual Host File
Go into the Apache directory and create a configuration file for WordPress.

Open the file, paste the following lines of code, save the file and close it.

Enable the Apache configuration for WordPress and rewrite the module.

Check the syntax:

mv wp-config-sample.php wp-config.php

nano wp-config.php

// ** Database settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');

/** Database username */
define('DB_USER', 'wordpress');

/** Database password */
define('DB_PASSWORD', 'YourStrongPasswordHere');

cd /etc/apache2/sites-available/

touch wordpress.conf

<VirtualHost *:80>
ServerName yourdomain.com
DocumentRoot /var/www/html/wordpress

<Directory /var/www/html/wordpress>
AllowOverride All
</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

sudo a2enmod rewrite

sudo a2ensite wordpress.conf

apachectl -t

You should receive the following output:

If the syntax is OK, restartd the Apache service.

Once the Apache service is restarted, you can finish your WordPress installation at
http://yourdomain.com.

That was all. You successfully installed and configured WordPress on Debian 12 LXC with the LAMP
stack.

Admin Panel Access: HTTP://yourdomain.com/wp-admin

Documentation derived from:

https://www.rosehosting.com/blog/how-to-install-wordpress-on-debian-12/

https://www.cherryservers.com/blog/how-to-install-and-start-using-mariadb-on-ubuntu-20-04

root@vps:~# apachectl -t
Syntax OK

systemctl reload apache2

https://www.rosehosting.com/blog/how-to-install-wordpress-on-debian-12/
https://www.cherryservers.com/blog/how-to-install-and-start-using-mariadb-on-ubuntu-20-04

