
Uptime Kuma
All docs related to Uptime Kuma

Uptime Kuma Installation

[How-To] Install Uptime Kuma on Debian 12 LXC

Uptime Kuma Configuration

[How-To] Use Uptime Kuma Behind Reverse Proxy
[How-To] Reset Uptime Kuma Password via CLI

Uptime Kuma Installation
All docs related to Uptime Kuma Installation

Uptime Kuma Installation

[How-To] Install Uptime
Kuma on Debian 12 LXC
Purpose
The purpose of this document is to show how to install uptime kuma on a Debian 12 LXC in
proxmox.

Prerequisites
List of prerequisites:

Root user or sudo user
Debian 12 LXC

Installation Instructions - Docker

Step 1: Install Uptime Kuma
Run the following line to install uptime kuma via docker:

Thats it! Uptime Kuma is now running on HTTP://localhost:3001

Using Docker deploy requires you to install docker and docker-compose on the LXC before
proceeding.

docker run -d --restart=always -p 3001:3001 -v uptime-kuma:/app/data --name uptime-kuma louislam/uptime-
kuma:1

Filesystem support for POSIX file locks is required to avoid SQLite database corruption. Be
aware of possible file locking problems such as those commonly encountered with NFS.
Please map the /app/data -folder to a local directory or volume.

HTTP://localhost:3001
https://www.sqlite.org/howtocorrupt.html#_file_locking_problems
https://www.sqlite.org/faq.html#q5

Browse to HTTP://localhost:3001

Step 2: Change Port or Volume (Optional)
Run the following line to adjust the port or volume and replace YOUR_PORT and YOU_DIR OR
VOLUME with your information

Thats it! Uptime Kuma is now running on HTTP://localhost:3001

Installation Instructions - Non-Docker
Step 1: Prerequisites
Ensure you have the non-docker prerequisite completed:

Node.js 14/16/18/20.4
npm 9
GIT
pm2

If you don't use the respective installer line below to get them installed:

Node.js 14/16/18/20.4

Npm 9

Git

Pm2

Step 2: Install Uptime Kuma

docker run -d --restart=always -p <YOUR_PORT>:3001 -v <YOUR_DIR OR VOLUME>:/app/data --name uptime-
kuma louislam/uptime-kuma:1

scripts

scripts

sudo apt install git -y

npm install pm2 -g && pm2 install pm2-logrotate

HTTP://localhost:3001
HTTP://localhost:3001

Run the following script to verify you version of npm is at the correct version needed:

Run the following to clone the repo for Uptime Kuma:

Run the following script to change directories into the uptime-kuma folder downloaded and use
npm to run setup:

Step 3: Start the Service
Option 1 to start the service:

Option 2 to start the service (Recommended) Running it in the background using PM2:

Thats it! Uptime Kuma is now running on HTTP://localhost:3001

Useful PM2 Commands
Here are some useful PM2 Commands:

If you want to see the current console output

If you want to add it to startup

https://github.com/louislam/uptime-kuma/wiki/%F0%9F%94%A7-How-to-Install

npm install npm@9 -g

git clone https://github.com/louislam/uptime-kuma.git

cd uptime-kuma

npm run setup

node server/server.js

pm2 start server/server.js --name uptime-kuma

pm2 monit

pm2 save && pm2 startup

HTTP://localhost:3001

Uptime Kuma Configuration
All docs related to Uptime Kuma configuration

Uptime Kuma Configuration

[How-To] Use Uptime Kuma
Behind Reverse Proxy
Purpose
This document aims to show how to configure your reverse proxy configuration for Uptime Kuma as
it is a web socket app.

Prerequisites
List of prerequisites:

Root user or sudo user
Uptime Kuma Server

Reverse Proxy Configuration
Nginx Reverse Proxy:
For Nginx with SSL:

server {
 listen 443 ssl http2;
 # Remove '#' in the next line to enable IPv6
 # listen [::]:443 ssl http2;
 server_name sub.domain.com;
 ssl_certificate /path/to/ssl/cert/crt;
 ssl_certificate_key /path/to/ssl/key/key;
 # *See "With SSL (Certbot)" below for details on automating ssl certificates

 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

For Nginx with SSL (Certbot):

For Nginx without SSL:

 proxy_set_header Host $host;
 proxy_pass http://localhost:3001/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

server {
 # If you don't have one yet, you can set up a subdomain with your domain registrar (e.g. Namecheap)
 # Just create a new host record with type='A Record', host='<subdomain>', value='<ip_address>'.

 server_name your_subdomain.your_domain.your_tld;

 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $host;
 proxy_pass http://localhost:3001/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

Once that's completed, you can run
sudo apt install python3-certbot-nginx
sudo certbot --nginx -d your_domain -d your_subdomain.your_domain -d www.your_domain
And Certbot will auto-populate this nginx .conf file for you, while also renewing your certificates automatically
in the future.

server {
 listen 80;
 # Remove '#' in the next line to enable IPv6

Apache Reverse Proxy:
For Apache With SSL:

For Apache Without SSL:

 # listen [::]:80;
 server_name sub.domain.com;
 location / {
 proxy_pass http://localhost:3001;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;
 }
}

<VirtualHost *:443>
 ServerName sub.domain.com
 SSLEngine On
 SSLCertificateFile /path/to/ssl/cert/crt
 SSLCertificateKeyFile /path/to/ssl/key/key
 # Protocol 'h2' is only supported on Apache 2.4.17 or newer.
 Protocols h2 http/1.1
 ProxyPreserveHost on
 ProxyPass / http://localhost:3001/
 RewriteEngine on
 RewriteCond %{HTTP:Upgrade} =websocket
 RewriteRule /(.*) ws://localhost:3001/$1 [P,L]
 RewriteCond %{HTTP:Upgrade} !=websocket
 RewriteRule /(.*) http://localhost:3001/$1 [P,L]
</VirtualHost>

<VirtualHost *:80>
 ServerName sub.domain.com
 ProxyPreserveHost on
 ProxyPass / http://localhost:3001/
 RewriteEngine on
 RewriteCond %{HTTP:Upgrade} websocket [NC]
 RewriteCond %{HTTP:Connection} upgrade [NC]

Caddy Reverse Proxy:
Caddy Normal:

Caddy with Docker-Compose:

HTTPS-Portal Reverse Proxy:

 RewriteRule ^/?(.*) "ws://localhost:3001/$1" [P,L]
</VirtualHost>

subdomain.domain.com {
 reverse_proxy 127.0.0.1:3001
}

version: '3'
networks:
 default:
 name: 'proxy_network'
services:
 uptime-kuma:
 image: louislam/uptime-kuma:1
 restart: unless-stopped
 volumes:
 - /srv/uptime:/app/data
 labels:
 caddy: status.example.org
 caddy.reverse_proxy: "* {{upstreams 3001}}"
 caddy:
 image: "lucaslorentz/caddy-docker-proxy:ci-alpine"
 ports:
 - "80:80"
 - "443:443"
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock:ro
 - /srv/caddy/:/data
 restart: unless-stopped
 environment:
 - CADDY_INGRESS_NETWORKS=proxy_network

Https Normal:

HAProxy:
No special configuration is required when using HAProxy as a reverse proxy although you may wish
to add the timeout tunnel option to either the defaults , listen , or backend sections. If using the
timeout tunnel option, it is also recommended to set timeout client-fin to handle instances where the
client stops responding.

Read more: http://cbonte.github.io/haproxy-dconv/2.4/configuration.html#4.2-timeout%20tunnel

version: '3.3'

services:
 https-portal:
 image: steveltn/https-portal:1
 ports:
 - '80:80'
 - '443:443'
 links:
 - uptime-kuma
 restart: always
 environment:
 DOMAINS: 'status.domain.com -> http://uptime-kuma:3001'
 STAGE: 'production' # Don't use production until staging works
 # FORCE_RENEW: 'true'
 WEBSOCKET: 'true'
 volumes:
 - https-portal-data:/var/lib/https-portal

 uptime-kuma:
 image: louislam/uptime-kuma:1
 container_name: uptime-kuma
 volumes:
 - ./uptime-kuma:/app/data
 ports:
 - 3001:3001

volumes:
 https-portal-data:

http://cbonte.github.io/haproxy-dconv/2.4/configuration.html#4.2-timeout%20tunnel

https://github.com/louislam/uptime-kuma/wiki/Reverse-Proxy#apache

Uptime Kuma Configuration

[How-To] Reset Uptime
Kuma Password via CLI
Purpose
This document aims to show how to reset the password for your UI user for uptime kuma via the
CLI of the server it is running on.

Prerequisites
List of prerequisites:

Root user or sudo user
Server running uptime Kuma

Reset Instructions
Step 1
Login with the root user, or login with normal user and use the follow to elevate to root:

Step 2
Run the following command to enter the Uptime Kuma docker container CLI:

Step 3
Run the following command to access the reset tool:

sudo su -l

docker exec -it uptime-kuma bash

Then, follow the prompts to reset and test in the UI of Uptime Kuma.

npm run reset-password

