Uptime Kuma

All docs related to Uptime Kuma

e Uptime Kuma Installation

o [How-To] Install Uptime Kuma on Debian 12 LXC
o [How-To] Install Uptime Kuma on Ubuntu 24 LTS VM

e Uptime Kuma Configuration

o [How-To] Use Uptime Kuma Behind Reverse Proxy

o [How-To] Reset Uptime Kuma Password via CLI

Uptime Kuma Installation

All docs related to Uptime Kuma Installation

Uptime Kuma Installation

[How-To] Install Uptime
Kuma on Debian 12 LXC

Purpose

The purpose of this document is to show how to install uptime kuma on a Debian 12 LXC in
proxmox.

Prerequisites

List of prerequisites:

e Root user or sudo user
e Debian 12 LXC

Installation Instructions - Docker

Using Docker deploy requires you to install docker and docker-compose on the LXC before
proceeding.

Step 1: Install Uptime Kuma
Run the following line to install uptime kuma via docker:

docker run -d --restart=always -p 3001:3001 -v uptime-kuma:/app/data --name uptime-kuma louislam/uptime-

kuma:1

Thats it! Uptime Kuma is now running on HTTP://localhost:3001

Filesystem support for POSIX file locks is required to avoid SQLite database corruption. Be

aware of possible file locking problems such as those commonly encountered with NFS.

Please map the /app/data -folder to a local directory or volume.

HTTP://localhost:3001
https://www.sqlite.org/howtocorrupt.html#_file_locking_problems
https://www.sqlite.org/faq.html#q5

Browse to HTTP://localhost:3001

Step 2: Change Port or Volume (Optional)

Run the following line to adjust the port or volume and replace YOUR_PORT and YOU_DIR OR
VOLUME with your information

docker run -d --restart=always -p <YOUR_PORT>:3001 -v <YOUR_DIR OR VOLUME>:/app/data --name uptime-

kuma louislam/uptime-kuma:1

Thats it! Uptime Kuma is now running on HTTP://localhost:3001

Installation Instructions - Non-Docker

Step 1: Prerequisites

Ensure you have the non-docker prerequisite completed:

e Node.js 14/16/18/20.4
e NpmM 9

[] GIT

e pmM2

If you don't use the respective installer line below to get them installed:

Node.js 14/16/18/20.4

scripts

Npm 9
scripts
Git
sudo apt install git -y

Pm?2

npm install pm2 -g && pm?2 install pm2-logrotate

Step 2: Install Uptime Kuma

HTTP://localhost:3001
HTTP://localhost:3001

Run the following script to verify you version of npm is at the correct version needed:

npm install npm@9 -g

Run the following to clone the repo for Uptime Kuma:

git clone https://github.com/louislam/uptime-kuma.git

Run the following script to change directories into the uptime-kuma folder downloaded and use
npm to run setup:

cd uptime-kuma

npm run setup

Step 3: Start the Service

Option 1 to start the service:

node server/server.js

Option 2 to start the service (Recommended) Running it in the background using PM2:
pm?2 start server/server.js --name uptime-kuma

Thats it! Uptime Kuma is now running on HTTP://localhost:3001

Useful PM2 Commands

Here are some useful PM2 Commands:

e If you want to see the current console output

pm2 monit

e If you want to add it to startup

pm2 save && pm?2 startup

https://github.com/louislam/uptime-kuma/wiki/%F0%9F%94%A7-How-to-Install

HTTP://localhost:3001

Uptime Kuma Installation

[How-To] Install Uptime
Kuma on Ubuntu 24 LTS VM

Purpose

This doc will walk through steps to install Uptime Kuma on a Ubuntu 24 LTS VM.

Prerequisites

List of prerequisites:

e Sudo user
e Ubuntu 24 LTS VM

Full Installation Guide for Uptime Kuma on
Ubuntu 24.04

Uptime Kuma is a self-hosted monitoring tool similar to Uptime Robot. It provides an easy-to-use
web Ul for monitoring services, websites, and endpoints.

Step 1: Prepare the Ubuntu VM

Ensure your Ubuntu VM is fully updated:

sudo apt update && sudo apt upgrade -y

Install necessary dependencies:

sudo apt install -y curl nano git unzip

Step 2: Create a Dedicated User (Optional)

For security, it's recommended to run Uptime Kuma as a separate user:

sudo useradd -m -s /bin/bash uptimekuma

Switch to the user:

sudo su - uptimekuma

Step 3: Install Node.js & NPM

Uptime Kuma requires Node.js (LTS version). Install Node.js 18+ using nvm (Node Version
Manager):

curl -fsSL https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.4/install.sh | bash
source ~/.bashrc

nvm install 18

Verify the installation:

node -v

npm -v

0 You should see versionsl8.x.x for Node.js and a matching npm version.

Step 4: Download and Install Uptime Kuma

Clone the Uptime Kuma repository:

git clone https://github.com/louislam/uptime-kuma.git

cd uptime-kuma

Install dependencies:

npm install

Build Uptime Kuma:

npm run setup

Run Uptime Kuma to check if it works:

node server/server.js

You should see output similar to:

Listening on http://127.0.0.1:3001

[0 Open a browser and go to:

http://your-server-ip:3001

If it works, press CTRL + C to stop it and continue to the next step.

Step 6: Create a Systemd Service

To keep Uptime Kuma running in the background, create a systemd service:

sudo nano /etc/systemd/system/uptime-kuma.service

Paste the following:

[Unit]
Description=Uptime Kuma

After=network.target

[Service]

Type=simple

User=uptimekuma

Group=uptimekuma

WorkingDirectory=/home/uptimekuma/uptime-kuma
ExecStart=/home/uptimekuma/.nvm/versions/node/v18.20.6/bin/node /home/uptimekuma/uptime-
kuma/server/server.js
Environment="PATH=/home/uptimekuma/.nvm/versions/node/v18.20.6/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin
:/usr/bin:/sbin:/bin"

Restart=always

RestartSec=5

[Install]

WantedBy=multi-user.target
Save and exit (CTRL+X , then Y, then Enter).
Set ownership to new user of uptime kuma directory:
sudo chown -R uptimekuma:uptimekuma /home/uptimekuma/uptime-kuma

Reload systemd and enable the service:

sudo systemctl daemon-reload

sudo systemctl enable --now uptime-kuma
Check if it's running:
sudo systemctl status uptime-kuma

(0 You should se€'Active: running”.

Step 7: Access Uptime Kuma

Open a browser and go to:

http://your-server-ip:3001

Follow the setup wizard to create an admin account.

Step 8: (Optional) Set Up Reverse Proxy with Nginx

If you want to access Uptime Kuma via a domain name (e.g., status.yourdomain.com), set up Nginx
as a reverse proxy.

1. Install Nginx

sudo apt install -y nginx

2. Configure Nginx for Uptime Kuma

Create a new Nginx config:

sudo nano /etc/nginx/sites-available/uptime-kuma

Add the following:

server {
listen 80;

server_name status.yourdomain.com;

location / {
proxy_pass http://127.0.0.1:3001;
proxy_set header Host $host;
proxy_set header X-Real-IP $remote_addr;
proxy_set header X-Forwarded-For $proxy_add_x forwarded_for;

proxy_set header X-Forwarded-Proto $scheme;

Save and exit.

3. Enable the Configuration

sudo In -s /etc/nginx/sites-available/uptime-kuma /etc/nginx/sites-enabled/

Test and restart Nginx:

sudo nginx -t

sudo systemctl restart nginx

[0 Now, Uptime Kuma is accessible at http://status.yourdomain.com .

Step 9: (Optional) Enable HTTPS with Let’'s Encrypt

To secure Uptime Kuma with HTTPS, use Certbot:

sudo apt install -y certbot python3-certbot-nginx

Run:

sudo certbot --nginx -d status.yourdomain.com

Certbot will automatically apply an SSL certificate.

Now, access:

https://status.yourdomain.com

[Pone! [T]

Final Notes

e Data Location: All Uptime Kuma data is stored in /home/uptimekuma/uptime-kuma/data/
e Backup: Regularly back up the data/ folder.
e Updating Uptime Kuma:

sudo su - uptimekuma

cd uptime-kuma

git pull

npm install

npm run setup

sudo systemctl restart uptime-kuma

Now, you have Uptime Kuma fully set up! [T]Let me know if you need help!

Uptime Kuma Configuration

All docs related to Uptime Kuma configuration

Uptime Kuma Configuration

[How-To] Use Uptime Kuma
Behind Reverse Proxy

Purpose

This document aims to show how to configure your reverse proxy configuration for Uptime Kuma as
it is a web socket app.

Prerequisites

List of prerequisites:

e Root user or sudo user
e Uptime Kuma Server

Reverse Proxy Configuration

Nginx Reverse Proxy:

For Nginx with SSL:

server {
listen 443 ssl http2;
Remove '#' in the next line to enable IPv6
listen [::]:443 ssl http2;
server_name sub.domain.com;
ssl_certificate /path/to/ssl/cert/crt;
ssl_certificate_key /path/to/ssl/key/key;

*See "With SSL (Certbot)" below for details on automating ssl certificates

location / {
proxy_set header X-Real-IP $remote_addr;

proxy_set _header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set header Host $host;

proxy_pass http://localhost:3001/;
proxy_http_version 1.1;

proxy_set header Upgrade $http_upgrade;

proxy set header Connection "upgrade";

For Nginx with SSL (Certbot):

server {
If you don't have one yet, you can set up a subdomain with your domain registrar (e.g. Namecheap)

Just create a new host record with type='A Record', host='<subdomain>', value="'<ip_address>".

server_name your_subdomain.your_domain.your_tld;

location / {
proxy_set header X-Real-IP $remote_addr;
proxy_set header X-Forwarded-For $proxy_add x_forwarded_for;
proxy set header Host $host;
proxy_pass http://localhost:3001/;
proxy_http_version 1.1;
proxy_set header Upgrade $http_upgrade;

proxy_set header Connection "upgrade";

Once that's completed, you can run

sudo apt install python3-certbot-nginx

sudo certbot --nginx -d your_domain -d your_subdomain.your_domain -d www.your_domain

And Certbot will auto-populate this nginx .conf file for you, while also renewing your certificates automatically

in the future.

For Nginx without SSL:

server {
listen 80;

Remove '#' in the next line to enable IPv6

listen [::]:80;

server_name sub.domain.com;

location / {
proxy_pass http://localhost:3001;
proxy_http_version 1.1;
proxy_set header Upgrade $http_upgrade;
proxy_set header Connection "upgrade";

proxy_set header Host $host;

Apache Reverse Proxy:

For Apache With SSL:

<VirtualHost *:443>
ServerName sub.domain.com
SSLEngine On
SSLCertificateFile /path/to/ssl/cert/crt
SSLCertificateKeyFile /path/to/ssl/key/key
Protocol 'h2' is only supported on Apache 2.4.17 or newer.
Protocols h2 http/1.1
ProxyPreserveHost on
ProxyPass / http://localhost:3001/
RewriteEngine on
RewriteCond % {HTTP:Upgrade} =websocket
RewriteRule /(.*) ws://localhost:3001/$1 [P,L]
RewriteCond % {HTTP:Upgrade} !'=websocket
RewriteRule /(.*) http://localhost:3001/$1 [P,L]

</VirtualHost>

For Apache Without SSL:

<VirtualHost *:80>
ServerName sub.domain.com
ProxyPreserveHost on
ProxyPass / http://localhost:3001/
RewriteEngine on
RewriteCond % {HTTP:Upgrade} websocket [NC]
RewriteCond % {HTTP:Connection} upgrade [NC]

RewriteRule ~/?(.*) "ws://localhost:3001/$1" [P,L]

</VirtualHost>

Caddy Reverse Proxy:

Caddy Normal:

subdomain.domain.com {

reverse_proxy 127.0.0.1:3001

Caddy with Docker-Compose:

version: '3'
networks:
default:
name: '‘proxy_network’
services:
uptime-kuma:
image: louislam/uptime-kuma:1
restart: unless-stopped
volumes:
- /srv/uptime:/app/data
labels:
caddy: status.example.org
caddy.reverse_proxy: "* {{upstreams 3001} }"
caddy:
image: "lucaslorentz/caddy-docker-proxy:ci-alpine"
ports:
- "80:80"
- "443:443"
volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro
- /srv/caddy/:/data
restart: unless-stopped
environment:

- CADDY_INGRESS_NETWORKS=proxy_network

HTTPS-Portal Reverse Proxy:

Https Normal:
version: '3.3'

services:
https-portal:

image: steveltn/https-portal:1

ports:
- '80:80'
-'443:443'

links:
- uptime-kuma

restart: always

environment:
DOMAINS: 'status.domain.com -> http://uptime-kuma:3001'
STAGE: 'production' # Don't use production until staging works
FORCE_RENEW: 'true'
WEBSOCKET: 'true'

volumes:

- https-portal-data:/var/lib/https-portal

uptime-kuma:
image: louislam/uptime-kuma:1
container_name: uptime-kuma
volumes:
- .Juptime-kuma:/app/data
ports:

- 3001:3001

volumes:

https-portal-data:

HAProxy:

No special configuration is required when using HAProxy as a reverse proxy although you may wish
to add the timeout tunnel option to either the defaults, listen, or backend sections. If using the
timeout tunnel option, it is also recommended to set timeout client-fin to handle instances where the

client stops responding.

Read more: http://cbonte.github.io/haproxy-dconv/2.4/configuration.html#4.2-timeout%20tunnel

http://cbonte.github.io/haproxy-dconv/2.4/configuration.html#4.2-timeout%20tunnel

https://github.com/louislam/uptime-kuma/wiki/Reverse-Proxy#apache

Uptime Kuma Configuration

[How-To] Reset Uptime
Kuma Password via CLI

Purpose

This document aims to show how to reset the password for your Ul user for uptime kuma via the
CLI of the server it is running on.

Prerequisites

List of prerequisites:

e Root user or sudo user
e Server running uptime Kuma

Reset Instructions

Step 1

Login with the root user, or login with normal user and use the follow to elevate to root:
sudo su -l

Step 2

Run the following command to enter the Uptime Kuma docker container CLI:
docker exec -it uptime-kuma bash

Step 3

Run the following command to access the reset tool:

npm run reset-password

Then, follow the prompts to reset and test in the Ul of Uptime Kuma.

