
NextCloud
All docs related to NextCloud

NextCloud Installation

[How-To] Install Nextcloud on Debian 12

NextCloud Configuration

[How-To] Configure Nextcloud after Installation
[How-To] Move Nextcloud Data Directory
[How-To] Add LDAP/AD Authentication to Nextcloud

[How-To] Format and Mount Data Drive on Debian Server

NextCloud Installation
All docs related to NextCloud Installation

NextCloud Installation

[How-To] Install Nextcloud
on Debian 12
Prerequisites
To complete this guide, ensure you have the following:

A Debian 12 server with at least 4 GB of memory and 2 CPUs.
A non-root user with administrator privileges.
A domain name pointed to the server IP address.

Installing Apache2 Web Server
In the first step, you will be installing the Apache2 web server that will be used to run Nextcloud.

First, update your Debian package index via the apt update command below. When finished, you
will get the latest package information that allows you to install the latest version of packages.

Now enter the following apt install command to install the Apache web server. Input y to confirm
when prompted, then press ENTER to proceed to the installation.

After Apache2 is installed, execute the systemctl commands below to verify the apche2 service
status.

sudo apt update

sudo apt install apache2 -y

sudo systemctl is-enabled apache2

sudo systemctl status apache2

The output enabled should indicate the apache2 service will start automatically upon the system
startup. And the status active (running) confirms that the apache2 service is running.

Installing UFW
After Apache2 is installed, you will install the UFW (Uncomplicated Firewall) and open ports for
OpenSSH, HTTP, and HTTPS. You will set up UFW as the default firewall on your Debian server.

Install the ufw package to your Debian server via the apt install command below. Input y to confirm
the installation and press ENTER to proceed.

After ufw is installed, execute the ufw commands below to allow the ssh service and enable ufw.

Input y when asked to start and enable the ufw service. If successful, you should get an output "
Firewall is active and enabled on system startup".

With the ufw running, you should add both HTTP and HTTPS ports that the Apache2 webserver will
use.

Run the ufw command below to get the list of application profiles available on ufw. You should see
profiles such as OpenSSH for ssh service and WWW Full for Apache2 webserver, both HTTP and
HTTPS protocols.

Now run the following command to add and enable the WWW Full profile and reload ufw to apply
the changes.

Lastly, run the ufw status command below to verify enabled rules in ufw. Ensure you got the WWW
Full profile enabled, which means both HTTP and HTTPS ports are opened.

sudo apt install ufw -y

sudo ufw allow OpenSSH

sudo ufw enable

sudo ufw app list

sudo ufw allow "WWW Full"

sudo ufw reload

Installing PHP 8.2
The latest Debian 12 Bookwork comes with PHP 8.2 packages by default, which is the PHP version
that is recommended for installing Nextcloud. Now, you will install PHP 8.2 packages and configure
PHP for the Nextcloud installation. You will also enable the PHP Opcache that will be used as the
memory caching for Nextcloud.

Run the apt install command below to install PHP packages to your Debian system. The command
will install PHP and some extensions needed by Nextcloud, such as GD, MySQL, Imagick, pear, and
apcu. Check the Nextcloud server requirements page to get the full list of packages that you need.

Input y to confirm the installation, then press ENTER to proceed.

After PHP is installed, check the PHP version and enabled PHP extensions using the below
command.

You should see PHP 8.2 is installed with extensions enabled, such as GD, MySQL, Imagick, xml, and
zip.

Next, run the nano editor command below to open the PHP configuration file
/etc/php/8.2/apache2/php.ini.

Uncomment the date.timezone parameter and input the proper timezone for PHP. EST =
America/New_York

Increase the default value of parameters memory_limit, upload_max_filesize, post_max_size, and
max_execution_time. Change the value as you need.

sudo ufw status

sudo apt install -y php php-curl php-cli php-mysql php-gd php-common php-xml php-json php-intl php-pear php-
imagick php-dev php-common php-mbstring php-zip php-soap php-bz2 php-bcmath php-gmp php-apcu
libmagickcore-dev php-redis php-memcached

php --version

php -m

sudo nano /etc/php/8.2/apache2/php.ini

date.timezone = Europe/Amsterdam

Enable file_uploads and allow_url_fopen by changing the default value to On.

Disable the parameter display_errors and output_buffering by changing the default value to Off.

Uncomment the zend_extension parameter and change the value to opcache. This will enable PHP
OPcache, which is needed for Nextcloud.

Add the following lines to the [opcache] section. The OPCache configuration is recommended by
Nextcloud.

Save the file and close the editor when finished.

Lastly, enter the systemctl command below to restart the apache2 service. Every time you make
changes to the PHP configuration, restart the apache2 service to apply the changes that you've
made.

Installing MariaDB Server

memory_limit = 512M
upload_max_filesize = 500M
post_max_size = 600M
max_execution_time = 300

file_uploads = On
allow_url_fopen = On

display_errors = Off
output_buffering = Off

zend_extension=opcache

opcache.enable = 1
opcache.interned_strings_buffer = 12
opcache.max_accelerated_files = 10000
opcache.memory_consumption = 128
opcache.save_comments = 1
opcache.revalidate_freq = 1

sudo systemctl restart apache2

After installing the Apache2 web server and PHP 8.2, you will install the MariaDB server that will be
used as the database for Nextcloud and configure the MariaDB root password via the mariadb-
secure-installation utility.

Install the MariaDB server via the apt install command below. Input y when prompted and press
ENTER to proceed with the installation.

Once MariaDB is installed, enter the following systemctl commands to verify the mariadb service.

The output enabled indicates that the mariadb service will be run automatically at system boot.
And the output active (running) should indicate that the mariadb service is running.

Now that the MariaDB server is running, you should secure the MariaDB installation, and this can
be done via the mariadb-secure-installation utility. The mariadb-secure-installation command helps
you set up the MariaDB root password and authentication and helps you remove the default
anonymous user default database test.

Execute the mariadb-secure-installation command to secure your MariaDB server.

During the process, you should input Y to agree and apply the configuration to MariaDB, or input n
 to disagree and leave the configuration as default. Below are some MariaDB configurations that
you will be asked for:

Press ENTER when asked for the MariaDB root password.
Input n when asked about the unix_socket authentication method.
Input Y to set up a new password for the MariaDB root user. Then, input the new password
and repeat.
Input Y to remove the default anonymous user from MariaDB.
Then, input Y again to disable remote login for the MariaDB root user.
Input Y to remove the default database test from MariaDB.
Lastly, input Y again to reload table privileges and apply the changes.

With this, the MariaDB server is installed and secured.

Creating Database and User

sudo apt install mariadb-server -y

sudo systemctl is-enabled mariadb

sudo systemctl status mariadb

sudo mariadb-secure-installation

After installing the MariaDB server, now you will create a new database and user for Nextcloud. To
achieve that, you must log in to the MariaDB server via the mariadb client.

Log in to the MariaDB server using the mariadb client command below. Input the MariaDB root
password when prompted.

Once logged in to MariaDB, run the following queries to create a new Mariadb database and user
for Nextcloud. In this example, you will create a new database nextcloud_db, and the user
nextclouduser with the password StrongPassword. Be sure to change the password
StrongPassword with a new password.

Lastly, run the following query to ensure that the user nextclouduser can access the database
nextcloud_db.

If everything goes well, you should see the user nextclouduser has privileges to the database
nextcloud_db.

Type quit to exit from the MariaDB server and complete this section.

Downloading Nextcloud Source
Code
At this point, all software packages for running Nextcloud are installed. Now you will download the
latest version of Nextcloud source code, then install it. Check the Nextcloud download page before
you start to get information about Nextcloud's latest version.

Before downloading the Nextcloud source code, run the apt install command below to install curl
and unzip.

sudo mariadb -u root -p

CREATE DATABASE nextcloud_db;

CREATE USER 'nextclouduser'@'%' IDENTIFIED BY 'StrongPassword';

GRANT ALL PRIVILEGES ON nextcloud_db.* TO 'nextclouduser'@'%';

FLUSH PRIVILEGES;

SHOW GRANTS FOR nextclouduser@localhost;

Move to the /var/www directory and download the Nextcloud source code via the curl command
below. Visit the Nextcloud Download page to get the latest version of Nextcloud.

Now extract the nextcloud.zip file via unzip command, then change the ownership of the nextcloud
directory to www-data.

With this, you should notice the Document Root directory for Nextcloud installation is
/var/www/nextcloud directory. And the Apache2 web server can access the nextcloud source code
via user www-data.

Configuring Apache2 Virtual Host
After downloading the Nextcloud source code, you must create the new Apache2 virtual host
configuration that will be used to run Nextcloud. Be sure you have the domain name pointed to
your Debian server IP address for your Nextcloud installation.

Create a new Apache2 virtual host configuration /etc/apache2/sites-available/nextcloud.conf using
the nano command below.

Change the domain name within the ServerName parameter with your domain, and the full path of
log for both ErrorLog and CustomLog parameters.

sudo apt install curl unzip -y

cd /var/www/

sudo curl -o nextcloud.zip https://download.nextcloud.com/server/releases/latest.zip

sudo unzip nextcloud.zip

sudo chown -R www-data:www-data nextcloud

sudo nano /etc/apache2/sites-available/nextcloud.conf

<VirtualHost *:80>
 ServerName cloud.leffringo.com
 DocumentRoot /var/www/nextcloud/

 # log files
 ErrorLog /var/log/apache2/cloud.leffringo.com-error.log

Once you're done, save the file and exit the editor.

Next, run the a2ensite command below to enable the virtual host configuration nextcloud.conf.
Then verify the overall Apache2 configuration via the apachectl command below.

You should see the output Syntax OK if you have correct and proper Apache configurations.

Now enter the following systemctl command to restart the apache2 service and apply the
Nextcloud virtual host configuration.

After the apache2 restarted, your Nextcloud installation should be accessible via an insecure HTTP
protocol. Visit your Nextcloud domain name and you should get the installation page like this:

Securing Nextcloud with SSL/TLS
Certificates
To add an additional security layer for your Nextcloud, you will set up HTTPS within your Apache2
virtual host configuration via Certbot. The Certbot is a command-line tool for generating free

 CustomLog /var/log/apache2/cloud.leffringo.com-access.log combined

 <Directory /var/www/nextcloud/>
 Options +FollowSymlinks
 AllowOverride All

 <IfModule mod_dav.c>
 Dav off
 </IfModule>

 SetEnv HOME /var/www/nextcloud
 SetEnv HTTP_HOME /var/www/nextcloud
 </Directory>
</VirtualHost>

sudo a2ensite nextcloud.conf

sudo apachectl configtest

sudo systemctl restart apache2

SSL/TLS certificates from Letsencrypt and comes with an additional plugin that allows you to
configure HTTPS automatically for multiple web servers.

Run the apt install command below to install Certbot and Certbot apache plugin. Input y, when
prompted for confirmation, and press, ENTER to proceed.

Now run the certbot command below to generate SSL/TLS certificates for your Nextcloud domain
name and automatically configure HTTPS within the Apache2 virtual host. Be sure to change the
domain name and the email address within the following command.

Once the process is finished, the Nextcloud domain name should be configured with HTTPS, which
is managed by the Certbot Apache plugin. And the SSL/TLS certificates are located at
/etc/letsencrypt/live/domain-name.com/ directory.

Installing Nextcloud
In this section, you will start the Nextcloud installation from your web browser. In this process, you
will also create the admin user for Nextcloud.

Launch your web browser and visit the domain name of your Nextcloud installation (i.e:
http://nextcloud.hwdomain.io/). You should automatically be redirected to a secure HTTPS
connection and will be asked to create an administrator user for Nextcloud.

Input the new admin user and password for your Nextcloud. You can also set up a custom data
directory or leave it as default.

Next, scroll to the bottom page and input the details database name, user, and password. Then
click Finish Setup to complete the installation.

Once installation is completed, you should get the Nextcloud recommendation to install some of
Nextcloud apps. Click Skip to install it later.

Now you should see the user dashboard like the following:

Now click on the folder icon to get the file manager of Nextcloud.

Lastly, click the user icon on the left menu and select Administration Settings.

sudo apt install certbot python3-certbot-apache

sudo certbot --apache --agree-tos --redirect --hsts --staple-ocsp --email user@hwdomain.io -d
nextcloud.hwdomain.io

Within the Administration section, click Overview. You should get information on your
Nextcloud version and some recommendations that you can apply to your Nextcloud,
including some security recommendations and performance optimizations.

Basic Performance Tuning for
Nextcloud
In the following steps, you will add settings to your Nextcloud installation by enabling memory
cache via OPCache and setting up cron via crontab.

Open the default Nextcloud configuration /var/www/nextcloud/config/config.php using the nano
editor command below.

Within the $CONFIG = array section, add the new configuration below to enable the memory
caching for Nextcloud.

Save the changes and close the file when you're done.

Next, run the following command to create a new crontab that will be used to run the Nextcloud
crontab script. The parameter -u www-data is used because the Apache2 web server is running on
top of that user.

Add the following configuration to the crontab file.

Save and exit the file when finished.

sudo nano /var/www/nextcloud/config/config.php

<?php
$CONFIG = array (
....
 # Additional configuration
 'memcache.local' => '\OC\Memcache\APCu',
);

sudo crontab -u www-data -e

*/5 * * * * php -f /var/www/nextcloud/cron.php

Verify the list crontab for the user www-data using the following command. Ensure you have the
crontab script that you've added.

Conclusion
You're all set! You've completed the installation of Nextcloud on your Debian system. You've
installed Nextcloud with Apache2 web server, PHP 8.2, and the MariaDB database server. You've
also secured your Nextcloud with UFW (Uncomplicated Firewall) and SSL/TLS certificates via
Certbot and Letsencrypt.

With that all setup, you can now use Nextcloud to store your documents securely or add third-party
data storage to your Nextcloud.

Reference To Documentation: https://www.howtoforge.com/step-by-step-installing-nextcloud-on-
debian-12/

sudo crontab -u www-data -l

NextCloud Configuration
All docs related to NextCloud configuration

NextCloud Configuration

[How-To] Configure
Nextcloud after Installation
Purpose
This document aims to make config adjustments to get ride of all errors in Nextcloud after initial
installation and setup.

Prerequisites
List of prerequisites:

Root user or sudo user
Nextcloud Server

Nextcloud Configuration
Step 1: Configure Nextcloud Config.php
First, run the following to change to the correct directory:

Next, run the following command to install redis:

Now, run this command to enable redis on startup:

cd /var/www/nextcloud/config

sudo apt update

sudo apt install redis-server php-redis

sudo systemctl enable redis-server

Next, run the following command to edit the config.php file:

Once in the file, work off of this below golden image, making sure not to change anything values
already set that are *** out of this golden config:

sudo nano config.php

<?php
$CONFIG = array (
 'instanceid' => '******',
 'passwordsalt' => '******',
 'secret' => '******',
 'trusted_domains' =>
 array (
 0 => 'cloud.dev.stretchpowered.com',
),
 'trusted_proxies' =>
 array (
 0 => '10.10.30.100',
),
 'overwritehost' => 'cloud.dev.stretchpowered.com',
 'datadirectory' => '/var/www/nextcloud/data',
 'dbtype' => 'mysql',
 'version' => '29.0.2.2',
 'overwrite.cli.url' => 'https://cloud.dev.stretchpowered.com',
 'overwriteprotocol' => 'https',
 'dbname' => 'nextcloud_db',
 'dbhost' => 'localhost',
 'dbport' => '',
 'dbtableprefix' => 'oc_',
 'mysql.utf8mb4' => true,
 'dbuser' => 'nextclouduser',
 'dbpassword' => '******',
 'installed' => true,
 'memcache.local' => '\\OC\\Memcache\\APCu',
'memcache.locking' => '\\OC\\Memcache\\Redis',
'redis' => [
 'host' => 'localhost',
 'port' => 6379,
 // Optional for password-protected Redis instances

Next, run the following command to restart Apache web server:

Once you've made all the changes to match the golden config, move on to step 2.

Step 2: Configure Apache2 nextcloud.conf
Run the following command to go to the correct directory:

Run the following command to edit the nextcloud.conf file:

Make the following changes if anything is different, being careful not to mess with domain settings
for the environment you are working with:

 // 'password' => '******',
 'timeout' => 0.0,
 'read_timeout' => 0.0,
 'dbindex' => 0,
],
 'default_phone_region' => 'US',
 'mail_from_address' => 'nextcloud-leffringo',
 'mail_smtpmode' => 'smtp',
 'mail_sendmailmode' => 'smtp',
 'mail_domain' => 'outlook.com',
 'mail_smtphost' => 'smtp-mail.outlook.com',
 'mail_smtpport' => '587',
 'mail_smtpauth' => 1,
 'mail_smtpname' => 'nextcloud-leffringo@outlook.com',
 'mail_smtppassword' => '******',
 'maintenance_window_start' => 7,
 'maintenance' => false,
 'theme' => '',
 'loglevel' => 2,
);

sudo systemctl restart apache2

cd /etc/apache2/sites-available

sudo nano nextcloud.conf

Once you've matched the golden config, move on to step 3.

Step 3: Configure .htaccess Config
Run the following command to change to the correct directory:

Run the following command to enable mod_rewrite on apache2:

Run the following command to edit the config file:

Most of this document default is fine, just scroll down toward the bottom and add lines missing
from this section:

<VirtualHost *:80>
 ServerName cloud.dev.stretchpowered.com
 DocumentRoot /var/www/nextcloud/

 # log files
 ErrorLog /var/log/apache2/cloud.dev.stretchpowered.com-error.log
 CustomLog /var/log/apache2/cloud.dev.stretchpowered.com-access.log combined

 <Directory /var/www/nextcloud/>
 Options +FollowSymlinks
 AllowOverride All

 <IfModule mod_dav.c>
 Dav off
 </IfModule>

 SetEnv HOME /var/www/nextcloud
 SetEnv HTTP_HOME /var/www/nextcloud
 </Directory>
</VirtualHost>

cd /var/www/nextcloud

sudo a2enmod rewrite

sudo nano .htaccess

Once you have added these missing lines, move on to step 4.

Step 4: Configure nginx reverse proxy config
Run the following command to change to the correct directory (on the reverse proxy nginx box, not
nextcloud):

Run the following command to edit the correct conf file name:

Match this config with the items below, making sure not to mess with the SSL and domain settings
you already have specific to the environment.

<IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteCond %{HTTP_USER_AGENT} DavClnt
 RewriteRule ^$ /remote.php/webdav/ [L,R=302]
 RewriteRule .* - [env=HTTP_AUTHORIZATION:%{HTTP:Authorization}]
 RewriteRule ^\.well-known/host-meta /nextcloud/public.php?service=host-meta [QSA,L]
 RewriteRule ^\.well-known/host-meta\.json /nextcloud/public.php?service=host-meta-json [QSA,L]
 RewriteRule ^\.well-known/carddav /remote.php/dav/ [R=301,L]
 RewriteRule ^\.well-known/caldav /remote.php/dav/ [R=301,L]
 RewriteRule ^\.well-known/webfinger /nextcloud/public.php?service=webfinger [QSA,L]
 RewriteRule ^remote/(.*) remote.php [QSA,L]
 RewriteRule ^(?:build|tests|config|lib|3rdparty|templates)/.* - [R=404,L]
 RewriteRule ^\.well-known/(?!acme-challenge|pki-validation) /index.php [QSA,L]
 RewriteRule ^ocm-provider/?$ index.php [QSA,L]
 RewriteRule ^(?:\.(?!well-known)|autotest|occ|issue|indie|db_|console).* - [R=404,L]
</IfModule>

cd /etc/nginx/conf.d

sudo nano cloud.dev.stretchpowered.com.conf

server {
 server_name cloud.dev.stretchpowered.com;
 client_max_body_size 64000m;
 location / {
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Host $remote_addr;

Once you've matched these to the golden config, move on to step 5.

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_pass http://10.30.20.151:80;

 # Adjusted timeout settings
 proxy_connect_timeout 600s;
 proxy_send_timeout 600s;
 proxy_read_timeout 600s;
 send_timeout 600s;

 # Adjusted buffer settings
 proxy_buffer_size 128k;
 proxy_buffers 4 256k;
 proxy_busy_buffers_size 256k;
 proxy_temp_file_write_size 256k;
 }

 add_header Strict-Transport-Security "max-age=31536000; includeSubDomains" always;

 listen 443 ssl; # managed by Certbot
 ssl_certificate /etc/letsencrypt/live/cloud.dev.stretchpowered.com/fullchain.pem; # managed by Certbot
 ssl_certificate_key /etc/letsencrypt/live/cloud.dev.stretchpowered.com/privkey.pem; # managed by Certbot
 include /etc/letsencrypt/options-ssl-nginx.conf; # managed by Certbot
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by Certbot

}
server {
 if ($host = cloud.dev.stretchpowered.com) {
 return 301 https://$host$request_uri;
 } # managed by Certbot

 listen 80;
 server_name cloud.dev.stretchpowered.com;
 return 404; # managed by Certbot

}

Step 5: Configure apcu Config
First lets make sure apcu is running under the correct version of PHP:

This should return the word apcu. Once you have that confirmed, run the following to edit the
config:

Once editing, add the following lines:

Save and exit that config file. Then, run the following to enable the apcu module for PHP 8.2:

Then, restart the web server:

Then, if you have this error or just as a good check, run this command to make sure no database
entries are missing:

That is it for this step, move on to step 6.

Step 6: Clear Nextcloud Error Log
Run the following command to become root as you need to be for this:

Run the following command to change to the correct directory:

Run the following command to remove the nextcloud config file:

php -m | grep apcu

sudo nano /etc/php/8.2/mods-available/apcu.ini

extension=apcu.so
apc.enable_cli=1

sudo phpenmod apcu

sudo systemctl restart apache2

sudo -u www-data php /var/www/nextcloud/occ db:add-missing-indices

sudo su -l

cd /var/www/nextcloud/data

Next, change dirs to this:

Then, run this:

With that, you've completed the initial config. Refresh your nextcloud instance in browser on admin
tab to see if you have the famous green check mark.

rm -f nextcloud.log

cd /var/www/nextcloud

sudo -u www-data php occ maintenance:repair --include-expensive

NextCloud Configuration

[How-To] Move Nextcloud
Data Directory
Purpose
The purpose of this document is to show how to move the data directory of a nextcloud server.

Prerequisites
List of prerequisites:

Root user or sudo user
Nextcloud Server

Data Directory Move
Step 1: Shut Down Nextcloud Web Server
First, we need to stop Apache so nextcloud is not active. Do this with the following command:

Step 2: Move Data Directory Contents
Next, we have to move the contents of the data directory. First, become root:

Then, use the copy command to move everything from the original dir to the target dir for new
data:

sudo systemctl stop apache2

sudo su -l

cp -r /var/www/nextcloud/data /mnt/nc-data/

Step 3: Change Data Directory in Nextcloud Config
Next, change the data directory in the nextcloud config:

Around line 15, you should see like above, change this to the new data directory.

Step 4: Change Owner Permissions
Next, we need to update www-data to be the owner of the new data dir:

Step 5: Start Nextcloud Web Server

Finally, start the nextcloud web server for the first time with the new data directory:

Once the web server has started, try to browse to the URL. If everything is good, you'll get to login
page. If it says something about a file not existing, you've not done things in order. After getting
past login, go to admin settings to check for errors. It will likely complain about the cronjob not
being able to run. Just run it manually once like this then it should be good going forward:

Once everything is good to go with no errors and you have backups, remove the old data directory:

sudo nano /var/www/nextcloud/config/config.php

'datadirectory' => '/mnt/nc-data/data',

sudo chown -R www-data:www-data /mnt/nc-data/data

sudo systemctl start apache2

sudo -u www-data php -f /var/www/nextcloud/cron.php

sudo rm -rf /var/www/nextcloud/data

NextCloud Configuration

[How-To] Add LDAP/AD
Authentication to Nextcloud
Purpose
This will show you how to add LDAP/AD auth to the nextcloud server.

Prerequisites
List of prerequisites:

Root user or sudo user
Nextcloud Server

LDAP Implementation
Step 1: Update and Install Modules
Run this line to update your server CLI side:

Now run this command to install the php-ldap module:

Next, reload Apache so that the updated library can be exposed to Nextcloud:

Now you have the needed mods and can move on to GUI steps.

Step 2: Add the LDAP App in the GUI

sudo apt update

sudo apt install php-ldap -y

sudo systemctl reload apache2

First, browse to your Nextcloud Instance in web UI. Log in and go to administrative settings in the
top right corner. Then, browse to disabled apps. Look for "LDAP user and group backend" and
enable it.

Step 3: Configure the LDAP App
After you enable the app, in the admin tab, you'll see "LDAP/AD Integration", select it. There are 4
tabs to configure:

1. The first tab is the Server tab. It will set up what LDAP/AD servers you are pointing to. Use
the IP address or the DNS name for each DC, and add them as separate servers with the
plus button. Once they are added, add an account dedicated to servicing user lookups for
this app and its password. Then finally, add a Base DN for user lookup.

2. The second tab is for user configuration. Everything here can be left default.
3. The third tab is for configuring Login Attributes. The only thing to change here is to to

check the email box and the username to allow users to sign in with either option.
4. The fourth tab is to configure security groups for nextcloud users. Use the drop-down to

select the group and hit save. Make sure the configuration shows as OK and green status.

[How-To] Format and Mount
Data Drive on Debian Server
Purpose
This doc shows how to take an additional virtual hard drive on a linux vm and make a mount point
on the main drive with it for nextcloud data.

Prerequisites
List of prerequisites:

Root user or sudo user
Debian 12 LXC or VM

Instructions
Step 1: Create a Partition on the New Drive

1. Use fdisk to partition the drive:

sudo fdisk /dev/sdb

2. Inside the fdisk utility:
Press n to create a new partition.
Select p for a primary partition.
Accept the default values for the first and last sectors (this will use the entire disk).
Press w to write the changes and exit.

Step 2: Format the Partition
1. Verify the partition name (it should be /dev/sdb1 after partitioning):

lsblk

2. Format the partition with the ext4 filesystem:

sudo mkfs.ext4 /dev/sdb1

Step 3: Mount the Partition
1. Create a directory to mount the drive (e.g., /mnt/nextcloud-data):

sudo mkdir /mnt/nextcloud-data

2. Mount the partition to the directory:

sudo mount /dev/sdb1 /mnt/nextcloud-data

Step 4: Make the Mount Persistent
1. Get the UUID of the new partition:

Example output:

sudo blkid /dev/sdb1

/dev/sdb1: UUID="abcd-1234-efgh-5678" TYPE="ext4"

2. Edit the /etc/fstab file:

sudo nano /etc/fstab

3. Add the following line to the file:

UUID=abcd-1234-efgh-5678 /mnt/nextcloud-data ext4 defaults 0 2

4. Save and exit the editor.

Step 5: Update Nextcloud Configuration
1. Move existing Nextcloud data to the new drive:

Replace /path/to/current/nextcloud/data/ with the actual path to your current Nextcloud data
directory.

sudo rsync -a /path/to/current/nextcloud/data/ /mnt/nextcloud-data/

2. Update the datadirectory path in Nextcloud's configuration file (config.php):

Find the datadirectory line and change it to:

sudo nano /var/www/nextcloud/config/config.php

'datadirectory' => '/mnt/nextcloud-data',

3. Set the correct permissions:

sudo chown -R www-data:www-data /mnt/nextcloud-data

Step 6: Restart Services
1. Restart the web server and PHP:

sudo systemctl restart apache2

2. Ensure everything works:
Log in to your Nextcloud instance.
Verify that the new data directory is being used.

