
Netbox Installation
All netbox installation documentation

[How-To] Install NetBox on Ubuntu 24 Server

[How-To] Install NetBox on
Ubuntu 24 Server
Purpose
The purpose of this how to is to show the process for installing and configuring NetBox on ubuntu
24.

Prerequisites
List of prerequisites:

Sudo user
Ubuntu 24 LTS VM

Instructions
Step 1: Postgresql Installation
First, update the system:

Then, install postgresql server:

Once installed, run this to verify its installed and check its version:

At a minimum, we need to create a database for NetBox and assign it a username and password
for authentication. Start by invoking the PostgreSQL shell as the system Postgres user.

sudo apt update

sudo apt install -y postgresql

psql -V

sudo -u postgres psql

Within the shell, enter the following commands to create the database and user (role), substituting
your own value for the password:

Use a strong password

Do not use the password from the example. Choose a strong, random password to ensure
secure database authentication for your NetBox installation.

Once complete, enter \q to exit the PostgreSQL shell.

You can verify that authentication works by executing the psql command and passing the
configured username and password. (Replace localhost with your database server if using a remote
database.)

If successful, you will enter a netbox prompt. Type \conninfo to confirm your connection, or type \q
to exit.

Step 2: Redis Configuration

Before continuing, verify that your installed version of Redis is at least v4.0:

CREATE DATABASE netbox;
CREATE USER netbox WITH PASSWORD 'J5brHrAXFLQSif0K';
ALTER DATABASE netbox OWNER TO netbox;
-- the next two commands are needed on PostgreSQL 15 and later
\connect netbox;
GRANT CREATE ON SCHEMA public TO netbox;

$ psql --username netbox --password --host localhost netbox
Password for user netbox:
psql (12.5 (Ubuntu 12.5-0ubuntu0.20.04.1))
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

netbox=> \conninfo
You are connected to database "netbox" as user "netbox" on host "localhost" (address "127.0.0.1") at port
"5432".
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
netbox=> \q

sudo apt install -y redis-server

redis-server -v

You may wish to modify the Redis configuration at /etc/redis.conf or /etc/redis/redis.conf , however in
most cases the default configuration is sufficient.

Use the redis-cli utility to ensure the Redis service is functional:

If successful, you should receive a PONG response from the server.

Step 3: NetBox Installation
This section of the documentation discusses installing and configuring the NetBox application itself.

Install System Packages
Begin by installing all system packages required by NetBox and its dependencies.

Python 3.10 or later required

NetBox supports Python 3.10, 3.11, and 3.12.

Before continuing, check that your installed Python version is at least 3.10:

Download NetBox
This documentation provides two options for installing NetBox: from a downloadable archive, or
from the git repository. Installing from a package (option A below) requires manually fetching and
extracting the archive for every future update, whereas installation via git (option B) allows for
seamless upgrades by re-pulling the master branch.

Option A: Download a Release Archive

Download the latest stable release from GitHub as a tarball or ZIP archive and extract it to your
desired path. In this example, we'll use /opt/netbox as the NetBox root.

redis-cli ping

sudo apt install -y python3 python3-pip python3-venv python3-dev build-essential libxml2-dev libxslt1-dev libffi-
dev libpq-dev libssl-dev zlib1g-dev

python3 -V

sudo wget https://github.com/netbox-community/netbox/archive/refs/tags/vX.Y.Z.tar.gz
sudo tar -xzf vX.Y.Z.tar.gz -C /opt
sudo ln -s /opt/netbox-X.Y.Z/ /opt/netbox

https://github.com/netbox-community/netbox/releases

Option B: Clone the Git Repository
Create the base directory for the NetBox installation. For this guide, we'll use /opt/netbox .

If git is not already installed, install it:

Next, clone the master branch of the NetBox GitHub repository into the current directory. (This
branch always holds the current stable release.)

The git clone command should generate output similar to the following:

Create the NetBox System User

It is recommended to install NetBox in a directory named for its version number. For
example, NetBox v3.0.0 would be installed into /opt/netbox-3.0.0 , and a symlink from
/opt/netbox/ would point to this location. (You can verify this configuration with the
command ls -l /opt | grep netbox .) This allows for future releases to be installed in parallel
without interrupting the current installation. When changing to the new release, only the
symlink needs to be updated.

sudo mkdir -p /opt/netbox/
cd /opt/netbox/

sudo apt install -y git

sudo git clone -b master --depth 1 https://github.com/netbox-community/netbox.git .

The git clone command above utilizes a "shallow clone" to retrieve only the most recent
commit. If you need to download the entire history, omit the --depth 1 argument.

Cloning into '.'...
remote: Enumerating objects: 996, done.
remote: Counting objects: 100% (996/996), done.
remote: Compressing objects: 100% (935/935), done.
remote: Total 996 (delta 148), reused 386 (delta 34), pack-reused 0
Receiving objects: 100% (996/996), 4.26 MiB | 9.81 MiB/s, done.
Resolving deltas: 100% (148/148), done.

Installation via git also allows you to easily try out different versions of NetBox. To check out
a specific NetBox release, use the git checkout command with the desired release tag. For
example, git checkout v3.0.8 .

https://github.com/netbox-community/netbox/releases

Create a system user account named netbox . We'll configure the WSGI and HTTP services to run
under this account. We'll also assign this user ownership of the media directory. This ensures that
NetBox will be able to save uploaded files.

Configuration
Move into the NetBox configuration directory and make a copy of configuration_example.py named
configuration.py . This file will hold all of your local configuration parameters.

Open configuration.py with your preferred editor to begin configuring NetBox. NetBox offers many
configuration parameters, but only the following four are required for new installations:

ALLOWED_HOSTS
DATABASE
REDIS
SECRET_KEY

ALLOWED_HOSTS
This is a list of the valid hostnames and IP addresses by which this server can be reached. You
must specify at least one name or IP address. (Note that this does not restrict the locations from
which NetBox may be accessed: It is merely for HTTP host header validation.)

If you are not yet sure what the domain name and/or IP address of the NetBox installation will be,
you can set this to a wildcard (asterisk) to allow all host values:

DATABASE
This parameter holds the database configuration details. You must define the username and
password used when you configured PostgreSQL. If the service is running on a remote host, update
the HOST and PORT parameters accordingly. See the configuration documentation for more detail

sudo adduser --system --group netbox
sudo chown --recursive netbox /opt/netbox/netbox/media/
sudo chown --recursive netbox /opt/netbox/netbox/reports/
sudo chown --recursive netbox /opt/netbox/netbox/scripts/

cd /opt/netbox/netbox/netbox/
sudo cp configuration_example.py configuration.py

ALLOWED_HOSTS = ['netbox.example.com', '192.0.2.123']

ALLOWED_HOSTS = ['*']

https://netboxlabs.com/docs/netbox/en/stable/configuration/
https://netboxlabs.com/docs/netbox/en/stable/configuration/
https://docs.djangoproject.com/en/3.0/topics/security/#host-headers-virtual-hosting
https://netboxlabs.com/docs/netbox/en/stable/configuration/required-parameters/#database

on individual parameters.

REDIS
Redis is a in-memory key-value store used by NetBox for caching and background task queuing.
Redis typically requires minimal configuration; the values below should suffice for most
installations. See the configuration documentation for more detail on individual parameters.

Note that NetBox requires the specification of two separate Redis databases: tasks and caching .
These may both be provided by the same Redis service, however each should have a unique
numeric database ID.

SECRET_KEY
This parameter must be assigned a randomly-generated key employed as a salt for hashing and
related cryptographic functions. (Note, however, that it is never directly used in the encryption of

DATABASE = {
 'NAME': 'netbox', # Database name
 'USER': 'netbox', # PostgreSQL username
 'PASSWORD': 'J5brHrAXFLQSif0K', # PostgreSQL password
 'HOST': 'localhost', # Database server
 'PORT': '', # Database port (leave blank for default)
 'CONN_MAX_AGE': 300, # Max database connection age (seconds)
}

REDIS = {
 'tasks': {
 'HOST': 'localhost', # Redis server
 'PORT': 6379, # Redis port
 'PASSWORD': '', # Redis password (optional)
 'DATABASE': 0, # Database ID
 'SSL': False, # Use SSL (optional)
 },
 'caching': {
 'HOST': 'localhost',
 'PORT': 6379,
 'PASSWORD': '',
 'DATABASE': 1, # Unique ID for second database
 'SSL': False,
 }
}

https://netboxlabs.com/docs/netbox/en/stable/configuration/required-parameters/#redis

secret data.) This key must be unique to this installation and is recommended to be at least 50
characters long. It should not be shared outside the local system.

A simple Python script named generate_secret_key.py is provided in the parent directory to assist in
generating a suitable key:

SECRET_KEY values must match

In the case of a highly available installation with multiple web servers, SECRET_KEY must be
identical among all servers in order to maintain a persistent user session state.

When you have finished modifying the configuration, remember to save the file.

Optional Requirements
All Python packages required by NetBox are listed in requirements.txt and will be installed
automatically. NetBox also supports some optional packages. If desired, these packages must be
listed in local_requirements.txt within the NetBox root directory.

Remote File Storage
By default, NetBox will use the local filesystem to store uploaded files. To use a remote filesystem,
install the django-storages library and configure your desired storage backend in configuration.py .

Remote Data Sources
NetBox supports integration with several remote data sources via configurable backends. Each of
these requires the installation of one or more additional libraries.

Amazon S3: boto3
Git: dulwich

For example, to enable the Amazon S3 backend, add boto3 to your local requirements file:

Sentry Integration

python3 ../generate_secret_key.py

sudo sh -c "echo 'django-storages' >> /opt/netbox/local_requirements.txt"

sudo sh -c "echo 'boto3' >> /opt/netbox/local_requirements.txt"

These packages were previously required in NetBox v3.5 but now are optional.

https://django-storages.readthedocs.io/en/stable/
https://netboxlabs.com/docs/netbox/en/stable/configuration/system/#storage_backend
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://www.dulwich.io/

NetBox may be configured to send error reports to Sentry for analysis. This integration requires
installation of the sentry-sdk Python library.

Run the Upgrade Script
Once NetBox has been configured, we're ready to proceed with the actual installation. We'll run the
packaged upgrade script (upgrade.sh) to perform the following actions:

Create a Python virtual environment
Installs all required Python packages
Run database schema migrations
Builds the documentation locally (for offline use)
Aggregate static resource files on disk

Note that Python 3.10 or later is required for NetBox v4.0 and later releases. If the default
Python installation on your server is set to a lesser version, pass the path to the supported
installation as an environment variable named PYTHON . (Note that the environment variable must
be passed after the sudo command.)

Upon completion, the upgrade script may warn that no existing virtual environment was detected.
As this is a new installation, this warning can be safely ignored.

Create a Super User
NetBox does not come with any predefined user accounts. You'll need to create a super user
(administrative account) to be able to log into NetBox. First, enter the Python virtual environment
created by the upgrade script:

sudo sh -c "echo 'sentry-sdk' >> /opt/netbox/local_requirements.txt"

Sentry integration was previously included by default in NetBox v3.6 but is now optional.

If you still have a Python virtual environment active from a previous installation step, disable
it now by running the deactivate command. This will avoid errors on systems where sudo has
been configured to preserve the user's current environment.

sudo /opt/netbox/upgrade.sh

sudo PYTHON=/usr/bin/python3.10 /opt/netbox/upgrade.sh

source /opt/netbox/venv/bin/activate

https://netboxlabs.com/docs/netbox/en/stable/administration/error-reporting/

Once the virtual environment has been activated, you should notice the string (venv) prepended to
your console prompt.

Next, we'll create a superuser account using the createsuperuser Django management command
(via manage.py). Specifying an email address for the user is not required, but be sure to use a very
strong password.

Schedule the Housekeeping Task
NetBox includes a housekeeping management command that handles some recurring cleanup
tasks, such as clearing out old sessions and expired change records. Although this command may
be run manually, it is recommended to configure a scheduled job using the system's cron daemon
or a similar utility.

A shell script which invokes this command is included at contrib/netbox-housekeeping.sh . It can be
copied to or linked from your system's daily cron task directory, or included within the crontab
directly. (If installing NetBox into a nonstandard path, be sure to update the system paths within
this script first.)

Test the Application
At this point, we should be able to run NetBox's development server for testing. We can check by
starting a development instance locally.

Check that the Python virtual environment is still active before attempting to run the server.

If successful, you should see output similar to the following:

cd /opt/netbox/netbox
python3 manage.py createsuperuser

sudo ln -s /opt/netbox/contrib/netbox-housekeeping.sh /etc/cron.daily/netbox-housekeeping

python3 manage.py runserver 0.0.0.0:8000 --insecure

Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).
August 30, 2021 - 18:02:23
Django version 3.2.6, using settings 'netbox.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Next, connect to the name or IP of the server (as defined in ALLOWED_HOSTS) on port 8000; for
example, http://127.0.0.1:8000/. You should be greeted with the NetBox home page. Try logging in
using the username and password specified when creating a superuser.

By default RHEL based distros will likely block your testing attempts with firewalld. The
development server port can be opened with firewall-cmd (add --permanent if you want the rule to
survive server restarts):

The development server is for development and testing purposes only. It is neither performant nor
secure enough for production use. Do not use it in production.

Type Ctrl+c to stop the development server.

Step 4: Gunicorn Configuration

NetBox runs as a WSGI application behind an HTTP server. This documentation shows how to install
and configure gunicorn (which is automatically installed with NetBox) for this role, however other
WSGI servers are available and should work similarly well.

Configuration
NetBox ships with a default configuration file for gunicorn. To use it, copy
/opt/netbox/contrib/gunicorn.py to /opt/netbox/gunicorn.py . (We make a copy of this file rather than
pointing to it directly to ensure that any local changes to it do not get overwritten during a future
NetBox upgrade.)

While the provided configuration should suffice for most initial installations, you may wish to edit
this file to change the bound IP address and/or port number, or to make performance-related
adjustments. See the Gunicorn documentation for the available configuration parameters.

systemd Setup

firewall-cmd --zone=public --add-port=8000/tcp

If the test service does not run, or you cannot reach the NetBox home page, something has
gone wrong. Do not proceed with the rest of this guide until the installation has been
corrected.

This page provides instructions for setting up the gunicorn WSGI server. If you plan to use
uWSGI instead, go here.

sudo cp /opt/netbox/contrib/gunicorn.py /opt/netbox/gunicorn.py

http://127.0.0.1:8000/
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://gunicorn.org/
https://docs.gunicorn.org/en/stable/configure.html
http://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://netboxlabs.com/docs/netbox/en/stable/installation/4b-uwsgi/

We'll use systemd to control both gunicorn and NetBox's background worker process. First, copy
contrib/netbox.service and contrib/netbox-rq.service to the /etc/systemd/system/ directory and reload the
systemd daemon.

Check user & group assignment

The stock service configuration files packaged with NetBox assume that the service will run with
the netbox user and group names. If these differ on your installation, be sure to update the service
files accordingly.

Then, start the netbox and netbox-rq services and enable them to initiate at boot time:

You can use the command systemctl status netbox to verify that the WSGI service is running:

You should see output similar to the following:

Once you've verified that the WSGI workers are up and running, move on to HTTP server setup.

sudo cp -v /opt/netbox/contrib/*.service /etc/systemd/system/
sudo systemctl daemon-reload

sudo systemctl enable --now netbox netbox-rq

systemctl status netbox.service

● netbox.service - NetBox WSGI Service
 Loaded: loaded (/etc/systemd/system/netbox.service; enabled; vendor preset: enabled)
 Active: active (running) since Mon 2021-08-30 04:02:36 UTC; 14h ago
 Docs: https://docs.netbox.dev/
 Main PID: 1140492 (gunicorn)
 Tasks: 19 (limit: 4683)
 Memory: 666.2M
 CGroup: /system.slice/netbox.service
 ├─1140492 /opt/netbox/venv/bin/python3 /opt/netbox/venv/bin/gunicorn --pid /va>
 ├─1140513 /opt/netbox/venv/bin/python3 /opt/netbox/venv/bin/gunicorn --pid /va>
 ├─1140514 /opt/netbox/venv/bin/python3 /opt/netbox/venv/bin/gunicorn --pid /va>
...

If the NetBox service fails to start, issue the command journalctl -eu netbox to check for log
messages that may indicate the problem.

Step 5: Web Server Configuration
This documentation provides example configurations for both nginx and Apache, though any HTTP
server which supports WSGI should be compatible.

Obtain an SSL Certificate
To enable HTTPS access to NetBox, you'll need a valid SSL certificate. You can purchase one from a
trusted commercial provider, obtain one for free from Let's Encrypt, or generate your own
(although self-signed certificates are generally untrusted). Both the public certificate and private
key files need to be installed on your NetBox server in a location that is readable by the netbox
 user.

The command below can be used to generate a self-signed certificate for testing purposes,
however it is strongly recommended to use a certificate from a trusted authority in production. Two
files will be created: the public certificate (netbox.crt) and the private key (netbox.key). The
certificate is published to the world, whereas the private key must be kept secret at all times.

The above command will prompt you for additional details of the certificate; all of these are
optional.

HTTP Server Installation

Option A: nginx
Begin by installing nginx:

There is a bug in the current stable release of gunicorn (v21.2.0) where automatic restarts of
the worker processes can result in 502 errors under heavy load. (See gunicorn bug #3038
 for more detail.) Users who encounter this issue may opt to downgrade to an earlier,
unaffected release of gunicorn (pip install gunicorn==20.1.0). Note, however, that this earlier
release does not officially support Python 3.11.

For the sake of brevity, only Ubuntu 20.04 instructions are provided here. These tasks are
not unique to NetBox and should carry over to other distributions with minimal changes.
Please consult your distribution's documentation for assistance if needed.

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /etc/ssl/private/netbox.key \
-out /etc/ssl/certs/netbox.crt

sudo apt install -y nginx

https://www.nginx.com/resources/wiki/
https://httpd.apache.org/docs/current/
https://letsencrypt.org/getting-started/
https://github.com/benoitc/gunicorn/issues/3038

Once nginx is installed, copy the nginx configuration file provided by NetBox to /etc/nginx/sites-
available/netbox . Be sure to replace netbox.example.com with the domain name or IP address of your
installation. (This should match the value configured for ALLOWED_HOSTS in configuration.py .)

gunicorn vs. uWSGI

The reference nginx configuration file assumes that gunicorn is in use. If using uWSGI instead,
you'll need to remove the gunicorn-specific configuration (lines beginning with proxy_pass and
proxy_set_header) and uncomment the uWSGI section below them before proceeding.

Then, delete /etc/nginx/sites-enabled/default and create a symlink in the sites-enabled directory to the
configuration file you just created.

Finally, restart the nginx service to use the new configuration.

Option B: Apache
Begin by installing Apache:

Next, copy the default configuration file to /etc/apache2/sites-available/ . Be sure to modify the
ServerName parameter appropriately.

Finally, ensure that the required Apache modules are enabled, enable the netbox site, and reload
Apache:

Confirm Connectivity
At this point, you should be able to connect to the HTTPS service at the server name or IP address
you provided.

sudo cp /opt/netbox/contrib/nginx.conf /etc/nginx/sites-available/netbox

sudo rm /etc/nginx/sites-enabled/default
sudo ln -s /etc/nginx/sites-available/netbox /etc/nginx/sites-enabled/netbox

sudo systemctl restart nginx

sudo apt install -y apache2

sudo cp /opt/netbox/contrib/apache.conf /etc/apache2/sites-available/netbox.conf

sudo a2enmod ssl proxy proxy_http headers rewrite
sudo a2ensite netbox
sudo systemctl restart apache2

Troubleshooting
If you are unable to connect to the HTTP server, check that:

Nginx/Apache is running and configured to listen on the correct port.
Access is not being blocked by a firewall somewhere along the path. (Try connecting
locally from the server itself.)

If you are able to connect but receive a 502 (bad gateway) error, check the following:

The WSGI worker processes (gunicorn) are running (systemctl status netbox should show a
status of "active (running)")
Nginx/Apache is configured to connect to the port on which gunicorn is listening (default is
8001).
SELinux is not preventing the reverse proxy connection. You may need to allow HTTP
network connections with the command setsebool -P httpd_can_network_connect 1

Step 6: LDAP Configuration
This guide explains how to implement LDAP authentication using an external server. User
authentication will fall back to built-in Django users in the event of a failure.

Install System Requirements

Install django-auth-ldap
Activate the Python virtual environment and install the django-auth-ldap package using pip:

Once installed, add the package to local_requirements.txt to ensure it is re-installed during future
rebuilds of the virtual environment:

Please keep in mind that the configurations provided here are bare minimums required toget
NetBox up and running. You may want to make adjustments to better suit your production
environment.

Certain components of NetBox (such as the display of rack elevation diagrams) rely on the
use of embedded objects. Ensure that your HTTP server configuration does not override the
X-Frame-Options response header set by NetBox.

sudo apt install -y libldap2-dev libsasl2-dev libssl-dev

source /opt/netbox/venv/bin/activate
pip3 install django-auth-ldap

Configuration
First, enable the LDAP authentication backend in configuration.py . (Be sure to overwrite this
definition if it is already set to RemoteUserBackend .)

Next, create a file in the same directory as configuration.py (typically /opt/netbox/netbox/netbox/)
named ldap_config.py . Define all of the parameters required below in ldap_config.py . Complete
documentation of all django-auth-ldap configuration options is included in the project's official
documentation.

General Server Configuration

sudo sh -c "echo 'django-auth-ldap' >> /opt/netbox/local_requirements.txt"

REMOTE_AUTH_BACKEND = 'netbox.authentication.LDAPBackend'

When using Active Directory you may need to specify a port on AUTH_LDAP_SERVER_URI to
authenticate users from all domains in the forest. Use 3269 for secure, or 3268 for non-
secure access to the GC (Global Catalog).

import ldap

Server URI
AUTH_LDAP_SERVER_URI = "ldaps://ad.example.com"

The following may be needed if you are binding to Active Directory.
AUTH_LDAP_CONNECTION_OPTIONS = {
 ldap.OPT_REFERRALS: 0
}

Set the DN and password for the NetBox service account.
AUTH_LDAP_BIND_DN = "CN=NETBOXSA, OU=Service Accounts,DC=example,DC=com"
AUTH_LDAP_BIND_PASSWORD = "demo"

Include this setting if you want to ignore certificate errors. This might be needed to accept a self-signed cert.
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER)
LDAP_IGNORE_CERT_ERRORS = True

Include this setting if you want to validate the LDAP server certificates against a CA certificate directory on

https://django-auth-ldap.readthedocs.io/
https://django-auth-ldap.readthedocs.io/

STARTTLS can be configured by setting AUTH_LDAP_START_TLS = True and using the ldap:// URI
scheme.

User Authentication

User Groups for Permissions

your server
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_CACERTDIR, LDAP_CA_CERT_DIR)
LDAP_CA_CERT_DIR = '/etc/ssl/certs'

Include this setting if you want to validate the LDAP server certificates against your own CA.
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_CACERTFILE, LDAP_CA_CERT_FILE)
LDAP_CA_CERT_FILE = '/path/to/example-CA.crt'

When using Windows Server 2012+, AUTH_LDAP_USER_DN_TEMPLATE should be set to None.

from django_auth_ldap.config import LDAPSearch

This search matches users with the sAMAccountName equal to the provided username. This is required if the
user's
username is not in their DN (Active Directory).
AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=Users,dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(sAMAccountName=%(user)s)")

If a user's DN is producible from their username, we don't need to search.
AUTH_LDAP_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

You can map user attributes to Django attributes as so.
AUTH_LDAP_USER_ATTR_MAP = {
 "first_name": "givenName",
 "last_name": "sn",
 "email": "mail"
}

When using Microsoft Active Directory, support for nested groups can be activated by using
NestedGroupOfNamesType() instead of GroupOfNamesType() for AUTH_LDAP_GROUP_TYPE . You will

is_active - All users must be mapped to at least this group to enable authentication.
Without this, users cannot log in.
is_staff - Users mapped to this group are enabled for access to the administration tools;
this is the equivalent of checking the "staff status" box on a manually created user. This
doesn't grant any specific permissions.
is_superuser - Users mapped to this group will be granted superuser status. Superusers are
implicitly granted all permissions.

also need to modify the import line to use NestedGroupOfNamesType instead of
GroupOfNamesType .

from django_auth_ldap.config import LDAPSearch, GroupOfNamesType

This search ought to return all groups to which the user belongs. django_auth_ldap uses this to determine
group
hierarchy.
AUTH_LDAP_GROUP_SEARCH = LDAPSearch("dc=example,dc=com", ldap.SCOPE_SUBTREE,
 "(objectClass=group)")
AUTH_LDAP_GROUP_TYPE = GroupOfNamesType()

Define a group required to login.
AUTH_LDAP_REQUIRE_GROUP = "CN=NETBOX_USERS,DC=example,DC=com"

Mirror LDAP group assignments.
AUTH_LDAP_MIRROR_GROUPS = True

Define special user types using groups. Exercise great caution when assigning superuser status.
AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 "is_active": "cn=active,ou=groups,dc=example,dc=com",
 "is_staff": "cn=staff,ou=groups,dc=example,dc=com",
 "is_superuser": "cn=superuser,ou=groups,dc=example,dc=com"
}

For more granular permissions, we can map LDAP groups to Django groups.
AUTH_LDAP_FIND_GROUP_PERMS = True

Cache groups for one hour to reduce LDAP traffic
AUTH_LDAP_CACHE_TIMEOUT = 3600

Authenticating with Active Directory
Integrating Active Directory for authentication can be a bit challenging as it may require handling
different login formats. This solution will allow users to log in either using their full User Principal
Name (UPN) or their username alone, by filtering the DN according to either the sAMAccountName or
the userPrincipalName . The following configuration options will allow your users to enter their
usernames in the format username or username@domain.tld .

Just as before, the configuration options are defined in the file ldap_config.py. First, modify the
AUTH_LDAP_USER_SEARCH option to match the following:

In addition, AUTH_LDAP_USER_DN_TEMPLATE should be set to None as described in the previous
sections. Next, modify AUTH_LDAP_USER_ATTR_MAP to match the following:

Finally, we need to add one more configuration option, AUTH_LDAP_USER_QUERY_FIELD . The following
should be added to your LDAP configuration file:

With these configuration options, your users will be able to log in either with or without the UPN
suffix.

Example Configuration

Authentication will fail if the groups (the distinguished names) do not exist in the LDAP
directory.

AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "ou=Users,dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(|(userPrincipalName=%(user)s)(sAMAccountName=%(user)s))"
)

AUTH_LDAP_USER_ATTR_MAP = {
 "username": "sAMAccountName",
 "email": "mail",
 "first_name": "givenName",
 "last_name": "sn",
}

AUTH_LDAP_USER_QUERY_FIELD = "username"

This configuration is intended to serve as a template, but may need to be modified in
accordance with your environment.

import ldap
from django_auth_ldap.config import LDAPSearch, NestedGroupOfNamesType

Server URI
AUTH_LDAP_SERVER_URI = "ldaps://ad.example.com:3269"

The following may be needed if you are binding to Active Directory.
AUTH_LDAP_CONNECTION_OPTIONS = {
 ldap.OPT_REFERRALS: 0
}

Set the DN and password for the NetBox service account.
AUTH_LDAP_BIND_DN = "CN=NETBOXSA,OU=Service Accounts,DC=example,DC=com"
AUTH_LDAP_BIND_PASSWORD = "demo"

Include this setting if you want to ignore certificate errors. This might be needed to accept a self-signed cert.
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER)
LDAP_IGNORE_CERT_ERRORS = False

Include this setting if you want to validate the LDAP server certificates against a CA certificate directory on
your server
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_CACERTDIR, LDAP_CA_CERT_DIR)
LDAP_CA_CERT_DIR = '/etc/ssl/certs'

Include this setting if you want to validate the LDAP server certificates against your own CA.
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_CACERTFILE, LDAP_CA_CERT_FILE)
LDAP_CA_CERT_FILE = '/path/to/example-CA.crt'

This search matches users with the sAMAccountName equal to the provided username. This is required if the
user's
username is not in their DN (Active Directory).
AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "ou=Users,dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(|(userPrincipalName=%(user)s)(sAMAccountName=%(user)s))"
)

If a user's DN is producible from their username, we don't need to search.
AUTH_LDAP_USER_DN_TEMPLATE = None

You can map user attributes to Django attributes as so.
AUTH_LDAP_USER_ATTR_MAP = {
 "username": "sAMAccountName",
 "email": "mail",
 "first_name": "givenName",
 "last_name": "sn",
}

AUTH_LDAP_USER_QUERY_FIELD = "username"

This search ought to return all groups to which the user belongs. django_auth_ldap uses this to determine
group
hierarchy.
AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
 "dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(objectClass=group)"
)
AUTH_LDAP_GROUP_TYPE = NestedGroupOfNamesType()

Define a group required to login.
AUTH_LDAP_REQUIRE_GROUP = "CN=NETBOX_USERS,DC=example,DC=com"

Mirror LDAP group assignments.
AUTH_LDAP_MIRROR_GROUPS = True

Define special user types using groups. Exercise great caution when assigning superuser status.
AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 "is_active": "cn=active,ou=groups,dc=example,dc=com",
 "is_staff": "cn=staff,ou=groups,dc=example,dc=com",
 "is_superuser": "cn=superuser,ou=groups,dc=example,dc=com"
}

For more granular permissions, we can map LDAP groups to Django groups.
AUTH_LDAP_FIND_GROUP_PERMS = True

Cache groups for one hour to reduce LDAP traffic

If you have issues with django-ldap-auth not being installed, leave the venv and install again with
the break param and then re-compile the app.

Troubleshooting LDAP
systemctl restart netbox restarts the NetBox service, and initiates any changes made to ldap_config.py
. If there are syntax errors present, the NetBox process will not spawn an instance, and errors
should be logged to /var/log/messages .

For troubleshooting LDAP user/group queries, add or merge the following logging configuration to
configuration.py :

Ensure the file and path specified in logfile exist and are writable and executable by the application
service account. Restart the netbox service and attempt to log into the site to trigger log entries to
this file.

With this, you should have a fully functioning NetBox installation integrated with active directory.

https://netboxlabs.com/docs/netbox/en/stable/installation/

AUTH_LDAP_CACHE_TIMEOUT = 3600
AUTH_LDAP_ALWAYS_UPDATE_USER = True

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'netbox_auth_log': {
 'level': 'DEBUG',
 'class': 'logging.handlers.RotatingFileHandler',
 'filename': '/opt/netbox/local/logs/django-ldap-debug.log',
 'maxBytes': 1024 * 500,
 'backupCount': 5,
 },
 },
 'loggers': {
 'django_auth_ldap': {
 'handlers': ['netbox_auth_log'],
 'level': 'DEBUG',
 },
 },
}

https://netboxlabs.com/docs/netbox/en/stable/configuration/system/#logging
https://netboxlabs.com/docs/netbox/en/stable/installation/

