
MariaDB
All documentation around MariaDB

MariaDB Configuration

[How-To] Change the Default Data Directory for MariaDB Server
[How-To] Migrate MariaDB Database from local to remote MariaDB Server
[How-To] Configure Galera Cluster on MariaDB Servers
[How-To] Configure Virtual IP for MariaDB servers with Keepalived

MariaDB Installation

[How-To] Install MariaDB on Ubuntu 24.04 LTS

MariaDB Configuration
All docs related to MariaDB configurations

MariaDB Configuration

[How-To] Change the Default
Data Directory for MariaDB
Server
Purpose
This documentation will focus on the process of changing the default data directory from its mysql
default to a desired location. This will not focus on how to create the remote directory or how to
mount it to the db server.

Prerequisites
List of prerequisites:

Root user or sudo user
MariaDB Server
MariaDB admin creds

Changing the default MySQL/MariaDB
Data Directory
Note: We are going to assume that our new data directory is /mnt/mysql-data . It is important to note
that this directory should be owned by mysql:mysql .

For your convenience, we’ve divided the process into 5 easy-to-follow steps:

Step 1: Identify Current MySQL Data Directory

mkdir /mnt/mysql-data
chown -R mysql:mysql /mnt/mysql-data

To begin, it is worthy and well to identify the current data directory using the following command.
Do not just assume it is still /var/lib/mysql since it could have been changed in the past.

After you enter the MySQL password, the output should be similar to.

Step 2: Copy MySQL Data Directory to a New Location
To avoid data corruption, stop the service if it is currently running before proceeding. Use the
systemd well-known commands to do so:

If the service has been brought down, the output of the last command should be as follows:

Then copy recursively the contents of /var/lib/mysql to /mnt/mysql-data preserving original
permissions and timestamps:

Step 3: Configure a New MySQL Data Directory
Edit the configuration file (my.cnf) to indicate the new data directory (/mnt/mysql-data in this case).

Locate the [mysqld] and [client] sections and make the following changes:

mysql -u root -p -e "SELECT @@datadir;"

------------- On SystemD -------------
systemctl stop mariadb
systemctl is-active mariadb

------------- On SysVInit -------------
service mysqld stop
service mysqld status

OR

service mysql stop
service mysql status

cp -R -p /var/lib/mysql/* /mnt/mysql-data

vi /etc/my.cnf
OR
vi /etc/mysql/my.cnf

Under [mysqld]:
datadir=/mnt/mysql-data
socket=/mnt/mysql-data/mysql.sock

Under [client]:
port=3306
socket=/mnt/mysql-data/mysql.sock

Save the changes and then proceed with the next step.

Step 4: Start the MariaDB Service

Now, use the same command as in Step 1 to verify the location of the new data directory:

Step 5: Create MySQL Database to Confirm Data Directory
Login to MariaDB, create a new database and then check /mnt/mysql-data :

Congratulations! You have successfully changed the data directory for MySQL or MariaDB.

Documentation derived from: How to Change a Default MySQL/MariaDB Data Directory in Linux
(tecmint.com)

systemctl start mariadb
systemctl is-active mariadb

mysql -u root -p -e "SELECT @@datadir;"

mysql -u root -p -e "CREATE DATABASE tecmint;"

https://www.tecmint.com/change-default-mysql-mariadb-data-directory-in-linux/
https://www.tecmint.com/change-default-mysql-mariadb-data-directory-in-linux/

MariaDB Configuration

[How-To] Migrate MariaDB
Database from local to
remote MariaDB Server
Purpose
Show how to migrate MariaDB database from local to remote MariaDB server

Prerequisites
List of prerequisites:

Root user or sudo user
MariaDB Servers
MariaDB Admin user

Instructions

Step 1: Backup your WordPress Database
1. Local Database Backup:

Log in to your current WordPress site's server.
Use a tool like mysqldump to create a backup of your local WordPress database. Run
the following command:

mysqldump -u [username] -p[password] [database_name] > local_backup.sql

Replace [username] , [password] , and [database_name] with your MariaDB username,
password, and WordPress database name, respectively.

2. Transfer Backup to Remote Server:

Copy the local_backup.sql file to your dedicated MariaDB server. You can use secure
copy (SCP) or any other method you prefer.

Step 2: Create a Database on Remote
Server

1. Access Remote MariaDB:
Log in to your dedicated MariaDB server.

2. Create a New Database:
In the MariaDB shell, create a new database for your WordPress site:

CREATE DATABASE new_database;

3. Create a Database User:
Create a user and grant necessary privileges:

CREATE USER 'new_user'@'%' IDENTIFIED BY 'password'; GRANT ALL PRIVILEGES ON
new_database.* TO 'new_user'@'%'; FLUSH PRIVILEGES;

Replace 'new_user' and 'password' with your preferred username and password.

Step 3: Import Database to Remote Server
1. Navigate to the Backup Location:

On your dedicated MariaDB server, navigate to the directory where you transferred
the local_backup.sql file.

2. Import Database:
Use the following command to import the database:

mysql -u [username] -p[password] [database_name] < local_backup.sql

Replace [username] , [password] , and [database_name] with the new database username,
password, and name.

Step 4: Update WordPress Configuration
1. Edit wp-config.php :

On your WordPress site's server, locate the wp-config.php file.
Update the database connection details:

define('DB_NAME', 'new_database');
define('DB_USER', 'new_user');
define('DB_PASSWORD', 'password');
define('DB_HOST', 'remote_server_ip');

Replace 'new_database' , 'new_user' , 'password' , and 'remote_server_ip' with your database
name, username, password, and the IP address of your dedicated MariaDB server.

Step 5: Test and Update URLs
1. Test the Site:

Visit your WordPress site to ensure everything is working correctly.
2. Update URLs (if needed):

If your site URLs have changed, update them using a search and replace tool or a
plugin like "Better Search Replace."

Step 6: Finalize
1. Remove Local Database:

Once you've confirmed that your site is working well on the remote database, you
can remove the local database.

2. Review and Optimize:
Take a moment to review your site and ensure that all functionality is working as
expected. Additionally, you may want to optimize your database tables.

By following these steps, you should successfully migrate your WordPress database from a local
MariaDB server to a remote one. Always make sure to have backups before making any significant
changes to your website.

MariaDB Configuration

[How-To] Configure Galera
Cluster on MariaDB Servers
Purpose
The purpose of this How-To is to explain the process in detail of how to take 3 MariaDB servers and
cluster them together in a Multi-Master Galera cluster. For best results, it is recommended to have
a minimum of 3 MariaDB servers to achieve quorum and proper redundancy. If you only cluster 2
MariaDB servers together and 1 becomes unavailable, it renders the remaining server unusable.
For production environments, minimum of 3 servers and recommended 5 or more.

Prerequisites
List of prerequisites:

Sudo user
Minimum 3 Ubuntu 24.04 LTS VMs with MariaDB installed and configured properly (See
below for instructions):

https://wiki.stretchpowered.com/books/mariadb/page/how-to-install-mariadb-on-
ubuntu-2404-lts

Instructions
Step 1: Stop the MariaDB Service on all Servers
First step is to stop the MariaDB service during configuration of Galera as to not get weird results
with setup. Run this on all MariaDB servers that will be in the cluster:

Step 2: Make a Backup of the MariaDB Config File on all
Servers

sudo systemctl stop mariadb

https://wiki.stretchpowered.com/books/mariadb/page/how-to-install-mariadb-on-ubuntu-2404-lts
https://wiki.stretchpowered.com/books/mariadb/page/how-to-install-mariadb-on-ubuntu-2404-lts

Next important step is to make a copy of the MariaDB config file on all affected servers in case you
need to go backwards. You can also achieve this with snapshots in your hypervisor:

Step 3: Prepare the MariaDB Config File for Galera Cluster
Settings
This step is where we actually configure the cluster. This will need to be configured on all affected
MariaDB servers but is going to look slightly different on each one of them. So lets edit the config
file. On each server you can access the config file by using the following command:

Inside the config file, the following should be done on each server, adjusting ips and names of
servers to be each one:

sudo cp /etc/mysql/mariadb.conf.d/50-server.cnf /etc/mysql/mariadb.conf.d/50-server.cnf.bak

sudo nano /etc/mysql/mariadb.conf.d/50-server.cnf

[mysqld]

Basic MariaDB Settings
bind-address = 0.0.0.0
default_storage_engine = InnoDB
binlog_format = ROW
innodb_autoinc_lock_mode = 2
query_cache_type=0
query_cache_size=0
log_slave_updates

Galera Cluster Settings
wsrep_on = ON
wsrep_provider = /usr/lib/galera/libgalera_smm.so
wsrep_cluster_name = "my_galera_cluster"
wsrep_cluster_address = "gcomm://<IP-OF-DB-NODE1>,<IP-OF-DB-NODE2>,<IP-OF-DB-NODE3>"

Node-specific Settings
wsrep_node_name = "<NAME-OF-THIS-NODE>"
wsrep_node_address = "<IP-OF-THIS-NODE>"

SST (State Snapshot Transfer) method
wsrep_sst_method = rsync
wsrep_sst_auth = "sst_user:secure_password" # Configure in later step

With this config saved, you should be prepared for the Galera cluster.

Step 4: Configure SST User
We need to take a moment to configure the user that we specified for SST in the config for Galera.
Run the following commands to do so:

This should be now operation for SST. Continue on to firewall steps.

Step 5: Add UFW Firewall Rules for Galera
Now that our Galera cluster is prepped, we need to open some ports on the VMs UFW firewall to
allow for the Galera cluster traffic. Run the following on each MariaDB server in the Galera cluster:

Step 6: Start the Galera Cluster
Our servers are prepped and ready to go. Time to start the cluster up. On your first node, run the
following (This is not the name of your cluster, it is a built in command so don't edit this):

Now, check the cluster status by logging into MariaDB and checking the wsrep_cluster_size value:

sudo mariadb -u root -p

CREATE USER 'sst_user'@'%' IDENTIFIED BY 'secure_password';

GRANT RELOAD, LOCK TABLES, PROCESS, REPLICATION CLIENT ON *.* TO 'sst_user'@'%';

FLUSH PRIVILEGES;

QUIT;

sudo ufw allow 4444/tcp

sudo ufw allow 4567/tcp

sudo ufw allow 4568/tcp

sudo ufw reload

sudo galera_new_cluster

sudo mariadb -u root -p

It should show 1, as we've only started the first. Now, on all remain nodes, run the following to start
MariaDB normally:

Now, on any of the nodes you have, run the following commands to check cluster size:

If you have three nodes, it should return a 3.

Step 7: Verify Functionality and Replication
Everything should be working now so we can test by creating a test database on any of the
servers. Remember, Galera is designed to be a Multi-Master clustering solution for MariaDB and
allows all nodes to simultaneously be read-write active. So, on any one of your nodes, run the
following:

You should see your DB. Now, pick another node in the cluster and run the following:

You should see your new DB have replicated to the other node. This wraps up this How-To. The
next step is to get a Virtual IP that can be used to access your DBs. This can be done with
keepalived or haproxy.

SHOW STATUS LIKE 'wsrep_cluster_size';

sudo systemctl start mariadb

sudo mariadb -u root -p

SHOW STATUS LIKE 'wsrep_cluster_size';

sudo mariadb -u root -p

CREATE DATABASE testdb;

SHOW DATABASES;

sudo mariadb -u root -p

SHOW DATABASES;

MariaDB Configuration

[How-To] Configure Virtual IP
for MariaDB servers with
Keepalived
Purpose
This How-To serves as documentation on how to add keepalived to your MariaDB servers so they
can all share a virtual IP or a VIP.

Prerequisites
List of prerequisites:

Sudo user
Galera cluster of MariaDB servers on Ubuntu 24.04 LTS

Instructions
Step 1: Update and Install Software
Run commands below to update os and install keepalived:

Step 2: Configure Keepalived
With keepalived freshly installed, we can open the configuration file on each server with this
command:

sudo apt update

sudo apt install -y keepalived

Here, you'll want to configure the master like this:

Then, you'll want to configure the backups like this:

sudo nano /etc/keepalived/keepalived.conf

vrrp_instance VI_1 {
 state MASTER
 interface eth0 # Replace with your actual network interface
 virtual_router_id 51
 priority 100 # Higher priority on the master
 advert_int 1

 authentication {
 auth_type PASS
 auth_pass securepassword
 }

 virtual_ipaddress {
 192.168.1.100 # Replace with your VIP
 }

 track_script {
 chk_mariadb
 }
}

vrrp_script chk_mariadb {
 script "/usr/local/bin/check_mariadb.sh"
 interval 2
 weight -20
}

vrrp_instance VI_1 {
 state BACKUP
 interface eth0
 virtual_router_id 51
 priority 90 # Lower priority on the backup
 advert_int 1

Step 3: Enable and Start Keepalived
Now we're ready to start the service. Run the following to enable it at startup and then start the
service once now:

Check the status of the service to verify its running:

Step 4: Test the VIP
Finally, test that the VIP is there:

 authentication {
 auth_type PASS
 auth_pass securepassword
 }

 virtual_ipaddress {
 192.168.1.100
 }

 track_script {
 chk_mariadb
 }
}

vrrp_script chk_mariadb {
 script "/usr/local/bin/check_mariadb.sh"
 interval 2
 weight -20
}

sudo systemctl enable keepalived

sudo systemctl start keepalived

sudo systemctl status keepalived

ip addr show

MariaDB Installation

MariaDB Installation

[How-To] Install MariaDB on
Ubuntu 24.04 LTS
Purpose
The purpose of this document is to show explain in full detail the steps to take a freshly installed
vm with Ubuntu 24.04 LTS as the operating system and install/configure MariaDB for use. It will not
dive into clustering or changing of binding for external use. Those will be handled in their own How-
To articles.

Prerequisites
List of prerequisites:

Sudo user
Ubuntu 24.04 LTS VM

Instructions
Step 1: Update the System
For the first step, we need to update the Ubuntu system OS:

Step 2: Install Dependent Software
Next, we'll need some additional software packages to be able to continue with configuration:

Step 3: Configure Hostname
Next, we'll configure the hostname of the server:

sudo apt update && sudo apt upgrade -y

sudo apt install -y software-properties-common

Step 4: Install MariaDB
Now that we have our base system configured, updated, and prepped, we can move on to installing
the MariaDB Server on the VM. We'll start by adding the MariaDB APT repository:

Now that we have the repository, we can install MariaDB:

At this point, you have an operational MariaDB Server. We need to do some additional steps to lock
it down and configure it for the first time.

Step 5: First Time Installation
Now that we have our MariaDB Server installed, we need to set it up. Run the following command:

This will take you into the start up installation for MariaDB. Follow the settings below to complete
setup:

Enter root password: Since one has not been set you, don't type a password and press
enter.
Switch to unix_socket authentication?: No, we don't need this.
Set root password?: This is where you can set a strong password for the root user.
Remove anonymous users?: Yes, it's best to remove them for security.
Disallow root login remotely?: Yes, you should disallow remote login for the root user
to prevent remote access.
Remove test database and access to it?: Yes, it’s a good idea to remove the test
database, as it's not needed.
Reload privilege tables now?: Yes, reload the privilege tables to apply all changes.

sudo hostnamectl set-hostname db-node1

sudo apt install -y curl gnupg

sudo curl -LsS https://mariadb.org/mariadb_release_signing_key.asc | sudo gpg --dearmor -o
/usr/share/keyrings/mariadb-keyring.gpg

sudo echo "deb [signed-by=/usr/share/keyrings/mariadb-keyring.gpg]
https://mirror.mariadb.org/repo/10.11/ubuntu lunar main" | sudo tee /etc/apt/sources.list.d/mariadb.list

sudo apt update

sudo apt install -y mariadb-server mariadb-client

sudo mysql_secure_installation

Once you are complete, try logging into MariaDB from terminal with the root MariaDB user you just
set the password for:

It will prompt for password, enter the one you set during installation. Then, try a command:

There should be 3 or 4 system level databases already there for you to see.

Step 6: Configure UFW Firewall
This step is a security step and not needed to make your MariaDB server functional. But, it is
always better to setup at the start and allow needed ports through as needed instead of leaving it
open or trying to lock down later. Run the following command to install UFW:

Once installed, start by allowing ssh:

With SSH allowed, you can enable the firewall:

It will warn you that you could get disconnected, continue as we know we just allowed ssh. Now,
add our other rule for MariaDB:

With this step completed, you have a secure and operational standalone MariaDB Server.

sudo mariadb -u root -p

SHOW DATABASES;

QUIT;

sudo apt install ufw -y

sudo ufw allow ssh

sudo ufw enable

sudo ufw allow 3306/tcp

sudo ufw reload

